Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dresden scientists generate model systems for retinal disease research

14.04.2016

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the DFG Research Center for Regenerative Therapies Dresden (CRTD) – Cluster of Excellence at the Technische Universität Dresden have created 3D retina tissue derived from stem cells. To generate these so called retina organoids, the researchers developed a novel protocol that is reliable and more efficient than previous methods. Based on these model systems they are planning to investigate eye diseases and potential strategies for treatment. They report on this in the scientific journal “Stem Cell Reports.”

Age-related macular degeneration and other diseases of the retina, which result in the progressive loss of neuronal cells in the eyes, are among the most frequent causes of impaired vision and blindness. To date, there are no cures for these diseases and knowledge on their mechanisms is scarce.


Retinal Organoid under the microscope

© CRTD

“Stem cell based technologies promise new avenues to study these conditions in the laboratory. In particular, we will profit from human cell based disease model systems,” explains Dr. Mike Karl, who leads a research group at the DZNE’s Dresden site and the CRTD.

Thus, Karl and his colleagues have developed a new protocol for the production of organ-like tissues, also called “organoids”, which resemble the retina of mice and humans. These model systems are generated in cell culture from pluripotent stem cells, which have the power to develop into any type of cell in our body.

The Biotechnology Center (BIOTEC) of the TU Dresden including the research group of Dr. Konstantinos Anastassiadis also participated in the project. From studying these retinal organoids the scientists hope to gain new insights on the causes of retinal diseases. “We thereby intend to facilitate the development of potential therapeutic drugs and treatment concepts,” explains Karl.

Compared to previous methods, the Dresden scientists were able to significantly improve the production of 3D retina organoids. Their new approach results in high production efficiency and reproducibility. “Our experimental protocol reliably recapitulates key characteristics of retinal development in vivo. Furthermore, it offers flexibility. We could therefore tailor the organoids to specific questions that we want to study,” comments DZNE researcher Manuela Völkner, lead author of the current publication. In particular, the researchers succeeded to raise the production of cone photoreceptor neurons. These sensory cells are essential for our color vision and high visual acuity, especially for reading.

“We now have the means to produce larger amounts of these precious cells, which is a premise for certain studies. This includes basic research as well as studies in regenerative medicine,” explains Karl. “For instance, several labs are pursuing the idea to restore vision due to cell loss by retinal cell transplantation. There is certainly a long way to go. But our model systems might help to develop such therapeutic strategies.”

These most recent successes of Dresden researchers once again demonstrate the potential that is harnessed through the close collaboration of several disciplines at the life science campus in Dresden-Johannstadt.


Scientific publication:

„Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis“, Manuela Völkner, Marlen Zschätzsch, Maria Rostovskaya, Rupert W. Overall, Volker Busskamp, Konstantinos Anastassiadis, Mike O. Karl, Stem Cell Reports,
http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Press Contact:

Franziska Clauß, M.A.
CRTD Press Officer
Phone: +49 351 458 82065, e-Mail: franziska.clauss@crt-dresden.de

Dr. Marcus Neitzert
DZNE Press and Public Relations
Phone: +49 228 43302271, e-Mail: marcus.neitzert@dzne.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has passed the third phase of the Excellence Initiative which aims at promoting top-level research and improving the quality of German universities and research institutions. The goal of the CRTD is to explore the body's self-healing potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases and bone regeneration. At the moment, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.
www.crt-dresden.de

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution within the Helmholtz Association of German Research Centers with nine sites across Germany (Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten). The DZNE cooperates closely with universities, their clinics and other research facilities. Cooperation partners in Dresden are the Technische Universität Dresden and the Universitätsklinikum Carl Gustav Carus.

www.dzne.de/en 

Enclosures:

Portrait: Dr. Mike O. Karl © CRTD

Microscope image: Retinal Organoid under the microscope: The following cell types are labeled in a tissue section: Cyan = photoreceptors (marker CRX), red = bipolar neurons & glia cells (marker VSX2), green = amacrine neurons (marker hPAX6GFP) © CRTD

Infographic: Production of retinal organoids from pluripotent stem cells © CRTD based on Stem Cell Reports)

Weitere Informationen:

http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>