Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dresden scientists generate model systems for retinal disease research

14.04.2016

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the DFG Research Center for Regenerative Therapies Dresden (CRTD) – Cluster of Excellence at the Technische Universität Dresden have created 3D retina tissue derived from stem cells. To generate these so called retina organoids, the researchers developed a novel protocol that is reliable and more efficient than previous methods. Based on these model systems they are planning to investigate eye diseases and potential strategies for treatment. They report on this in the scientific journal “Stem Cell Reports.”

Age-related macular degeneration and other diseases of the retina, which result in the progressive loss of neuronal cells in the eyes, are among the most frequent causes of impaired vision and blindness. To date, there are no cures for these diseases and knowledge on their mechanisms is scarce.


Retinal Organoid under the microscope

© CRTD

“Stem cell based technologies promise new avenues to study these conditions in the laboratory. In particular, we will profit from human cell based disease model systems,” explains Dr. Mike Karl, who leads a research group at the DZNE’s Dresden site and the CRTD.

Thus, Karl and his colleagues have developed a new protocol for the production of organ-like tissues, also called “organoids”, which resemble the retina of mice and humans. These model systems are generated in cell culture from pluripotent stem cells, which have the power to develop into any type of cell in our body.

The Biotechnology Center (BIOTEC) of the TU Dresden including the research group of Dr. Konstantinos Anastassiadis also participated in the project. From studying these retinal organoids the scientists hope to gain new insights on the causes of retinal diseases. “We thereby intend to facilitate the development of potential therapeutic drugs and treatment concepts,” explains Karl.

Compared to previous methods, the Dresden scientists were able to significantly improve the production of 3D retina organoids. Their new approach results in high production efficiency and reproducibility. “Our experimental protocol reliably recapitulates key characteristics of retinal development in vivo. Furthermore, it offers flexibility. We could therefore tailor the organoids to specific questions that we want to study,” comments DZNE researcher Manuela Völkner, lead author of the current publication. In particular, the researchers succeeded to raise the production of cone photoreceptor neurons. These sensory cells are essential for our color vision and high visual acuity, especially for reading.

“We now have the means to produce larger amounts of these precious cells, which is a premise for certain studies. This includes basic research as well as studies in regenerative medicine,” explains Karl. “For instance, several labs are pursuing the idea to restore vision due to cell loss by retinal cell transplantation. There is certainly a long way to go. But our model systems might help to develop such therapeutic strategies.”

These most recent successes of Dresden researchers once again demonstrate the potential that is harnessed through the close collaboration of several disciplines at the life science campus in Dresden-Johannstadt.


Scientific publication:

„Retinal Organoids from Pluripotent Stem Cells Efficiently Recapitulate Retinogenesis“, Manuela Völkner, Marlen Zschätzsch, Maria Rostovskaya, Rupert W. Overall, Volker Busskamp, Konstantinos Anastassiadis, Mike O. Karl, Stem Cell Reports,
http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Press Contact:

Franziska Clauß, M.A.
CRTD Press Officer
Phone: +49 351 458 82065, e-Mail: franziska.clauss@crt-dresden.de

Dr. Marcus Neitzert
DZNE Press and Public Relations
Phone: +49 228 43302271, e-Mail: marcus.neitzert@dzne.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has passed the third phase of the Excellence Initiative which aims at promoting top-level research and improving the quality of German universities and research institutions. The goal of the CRTD is to explore the body's self-healing potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases and bone regeneration. At the moment, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.
www.crt-dresden.de

The German Center for Neurodegenerative Diseases (DZNE) investigates the causes of diseases of the nervous system and develops strategies for prevention, treatment and care. It is an institution within the Helmholtz Association of German Research Centers with nine sites across Germany (Berlin, Bonn, Dresden, Göttingen, Magdeburg, Munich, Rostock/Greifswald, Tübingen and Witten). The DZNE cooperates closely with universities, their clinics and other research facilities. Cooperation partners in Dresden are the Technische Universität Dresden and the Universitätsklinikum Carl Gustav Carus.

www.dzne.de/en 

Enclosures:

Portrait: Dr. Mike O. Karl © CRTD

Microscope image: Retinal Organoid under the microscope: The following cell types are labeled in a tissue section: Cyan = photoreceptors (marker CRX), red = bipolar neurons & glia cells (marker VSX2), green = amacrine neurons (marker hPAX6GFP) © CRTD

Infographic: Production of retinal organoids from pluripotent stem cells © CRTD based on Stem Cell Reports)

Weitere Informationen:

http://dx.doi.org/10.1016/j.stemcr.2016.03.001

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>