Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double chemical action yields double success

19.03.2012
The dynamic equilibrium between two reactive silicon compounds provides chemists with improved tools for synthesizing optically and electronically active molecules

Molecules containing silicon double bonds, or disilenes, can be nearly twice as responsive to light as double-bonded hydrocarbons—a feature that makes them irresistible to researchers developing novel devices such as organic light-emitting diodes.


A cross-over reaction between dibromo-disilene compounds substituted with two types of ‘Rind’ ligands (red and blue spheres) can take place at room temperature in solution without using metal catalysts (yellow spheres, bromine). Copyright : 2012 Tsukasa Matsuo et al.

But because disilenes are difficult to isolate and tend to polymerize, chemists struggle to control them with their usual synthetic tricks. Now, Kohei Tamao and colleagues from the RIKEN Advanced Science Institute in Wako have discovered a unique halogen-substituted disilene complex that makes assembling advanced conjugated materials easier than ever before.

Halogen elements such as chlorine or bromine can boost the synthetic capabilities of many molecules once attached to their frameworks. Techniques known as substitution reactions can then switch the halogens for other groups, such as aromatic species. However, chemists have scarcely studied halogenated disilenes because theoretical calculations indicate that they are inherently volatile.
Recently however, Tamao and colleagues developed compounds that are extraordinarily adept at stabilizing disilenes. Known as ‘Rind’ ligands, these molecules have a unique fused-ring structure that locks silicon double bonds into place. They also have chemically tunable side chains that optimize compatibility with a variety of substrates and solvents. Based on these capabilities, Tamao and team postulated that their technique could capture the halogenated targets.

Experiments proved that their instincts were correct: combining a Rind-protected bromine–silicon precursor with a reducing agent successfully produced the sought-after dibromo-disilene crystals. But closer examination of the new product’s reactivity revealed a surprise. Simply mixing it with an acetylene derivative caused the disilene to cleave in half and join to both sides of the carbon triple bond, producing a triangle-shaped unsaturated ring.

According to co-author Tsukasa Matsuo, this reaction provided strong evidence that the halogenated disilene could easily dissociate. To confirm this behavior, Katsunori Suzuki, another co-author, dissolved two dibromo-disilenes, each protected by a different Rind ligand, into solution. After one day at room temperature, the researchers observed an extraordinary event: the spontaneously cleaved fragments, known as bromo-silylenes, had reconnected into new disilenes containing both Rind ligands (Fig. 1). This type of ‘cross-over’ reaction, also known as olefin metathesis, is extremely useful to chemists and normally requires expensive metal catalysts to proceed.

The researchers exploited the synthetic potential of the dynamic dibromo-disilenes by capturing the reactive silylene fragment with a base, and then used this complex to construct aromatic-substituted conjugated silicon molecules inaccessible through other techniques. “These results open a new platform for development of functional disilene materials and devices,” says Matsuo.

The corresponding author for this highlight is based at the Functional Elemento-Organic Chemistry Unit, RIKEN Advanced Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Tracing the evolution of vision
23.08.2019 | University of Göttingen

nachricht Caffeine does not influence stingless bees
23.08.2019 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>