Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dormant prostate cancer cells may be reawakened by factors produced in inflammatory cells

03.02.2014
Researchers in the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute discovered in pre-clinical models that dormant prostate cancer cells found in bone tissue can be reawakened, causing metastasis to other parts of the body. Understanding this mechanism of action may allow researchers to intervene prior to disease progression.

"Understanding how and why dormant cells in bone tissue metastasize will aid us in preventing the spread of disease, prolonging survival and improving overall quality of life," said Chia-Yi "Gina" Chu, PhD, a researcher and postdoctoral fellow in the Uro-Oncology Research Program and lead author of the study published in the journal Endocrine-Related Cancer.

In the study, investigators found that cancerous cells in the bone were reawakened after exposure to RANKL, a signaling molecule commonly produced by inflammatory cells. Researchers then genetically engineered cells to overproduce RANKL and found that these cells could significantly alter the gene expression of surrounding dormant cells in lab studies and in laboratory mice, causing them to transform into aggressive cancer cells.

Researchers then injected these engineered RANKL cells directly into the blood circulation of laboratory mice, which caused dormant cells within the skeleton to reawaken, creating tumors within the bone. When the RANKL receptor or its downstream targets were blocked, tumors did not form.

"After examination, these engineered tumors were found to contain both RANKL-producing prostate cancer cells and dormant cells, which had been transformed to become cancerous," said Chu. "However, the transformed cells displayed aggressive traits that would metastasize to bone and become resistant to standard hormone therapies used to treat the disease."

Though findings are preliminary, researchers plan to identify other cells known to produce RANKL that may also recruit and reprogram dormant cells to colonize bone tissue. Investigators plan to embark into clinical research with human patients in collaboration with leading Cedars-Sinai researchers, including Edwin Posadas, MD, medical director of the Urologic Oncology Program.

"Though more work must be done to understand how RANKL reprograms dormant cells to become cancerous, we look forward to examining its influence on promoting metastasis and secondary tumors, as well as the possibility of 'deprogramming' metastatic cancer cells," said Leland Chung, PhD, director of the Uro-Oncology Research Program.

Cedars-Sinai collaborators include Michael Freeman, PhD, director of cancer biology and therapeutics in the Department of Biomedical Sciences and vice chair in the Department of Surgery; Haiyen E. Zhau, PhD, professor in the Department of Medicine; Ruoxiang Wang, PhD, associate professor in the Department of Medicine; Andre Rogatko, PhD, director of the Biostatistics and Bioinformatics Core; and Sungyong You, PhD, and Jayoung Kim, PhD, both researchers in the Department of Surgery.

Xu Feng, PhD, and Majd Zayzafoon, MD, PhD, from the University of Alabama, Birmingham; Mary C. Farach-Carson, PhD, from Rice University; and Youhua Liu, PhD, from the University of Pittsburgh, contributed to the study.

This research is supported in part by grants from National Cancer Institute (P01-CA098912, R01-CA122602), the Prostate Cancer Foundation, including both a Challenge Award and a Young Investigator Award, and Cedars-Sinai Medical Center Board of Governors Endowed Chair in Cancer Research.

Citation: Endocrine-Related Cancer. 2014 January: RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization.

Cara Martinez | EurekAlert!
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>