Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doped by food

07.01.2019

Dopamine release regulates our eating behaviour

When it comes to our food intake, we are only partially in control. Scientists at the Max Planck Institute for Metabolism Research in Cologne were able to show that our gastrointestinal tract is in constant contact with the brain and uses reward stimuli to control our desire for food.


Dopamine is the most important messenger substance of the reward system in the brain and is released when, for example, goals are achieved or desire for something motivates us to take action.

In elaborate studies, research group leaders Marc Tittgemeyer and Heiko Backes have investigated the question of how food intake in the body is actually controlled.

The scientists offered milkshakes to volunteers and at the same time measured the release of dopamine in the brain using a newly developed method.

With the first taste of the milkshake, the brain immediately releases an initial wave of dopamine. As soon as the drink then reaches the stomach, another round of dopamine is released.

"Previous experiments with mice have shown that when food reaches the stomach, it is reported to the brain. Our results show that this also happens in humans and, in addition, which specific brain areas are involved," explains Tittgemeyer.

The researchers have also found a link between subjective desire and dopamine release: The brains of participants who had a particular craving for the milkshake, released more dopamine when they tasted the drink. As soon as it reached the stomach, however, less dopamine was released.

"Our data show that our cravings are closely related to dopamine. If we don't get the second release of dopamine through the stomach, we might continue to eat until we do", explains Backes.

Food intake primarily supplies the body with energy and nutrients. Ideally, energy consumption and food intake are in constant balance. However, food also has a rewarding value: "If the reward signals are stronger than the equilibrium signal, we eat more than necessary, which can lead to overweight and obesity," says Backes.

Can obesity then be prevented by controlling the release of dopamine? "Unfortunately, it's not that easy," answers Tittgemeyer. "How our body signals influence our actions and how we can influence those signals, for example through cognitive control, is not yet really understood. More research is still needed."

The research was performed in cooperation with CECAD.

Wissenschaftliche Ansprechpartner:

Heiko Backes
Max Planck Institute for Metabolism Research
phone: +49(0)221 4726 440
E-Mail: backes@sf.mpg.de

Marc Tittgemeyer
Max Planck Institute for Metabolism Research
phone: +49(0)221 4726 215
E-Mail: tittgemeyer@sf.mpg.de

Originalpublikation:

Sharmili Edwin Thanarajah, Heiko Backes, Alexandra G. DiFeliceantonio, Kerstin Albus, Anna Lena Cremer, Ruth Hanssen, Rachel N. Lippert, Oliver A. Cornely, Dana M. Small, Jens C. Brüning, Marc Tittgemeyer: Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metabolism, 2019.

Dr. Annegret Burkert | Max-Planck-Institut für Stoffwechselforschung
Further information:
http://www.sf.mpg.de

More articles from Life Sciences:

nachricht Blood test shows promise for early detection of severe lung-transplant rejection
23.01.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Evolution of signaling molecules opens door to new sepsis therapy approaches
23.01.2019 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>