Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA Caught Rock 'N Rollin'

01.02.2011
DNA, that marvelous, twisty molecule of life, has an alter ego, research at the University of Michigan and the University of California, Irvine reveals.

On rare occasions, its building blocks "rock and roll," deforming the familiar double helix into a different shape.

"We show that the simple DNA double helix exists in an alternative form---for one percent of the time---and that this alternative form is functional," said Hashim M. Al-Hashimi, who is the Robert L. Kuczkowski Professor of Chemistry and Professor of Biophysics at U-M. "Together, these data suggest that there are multiple layers of information stored in the genetic code." The findings were published online Jan. 26 in the journal Nature.

It's been known for some time that the DNA molecule can bend and flex, something like a rope ladder, but throughout these gyrations its building blocks---called bases---remain paired up just the way they were originally described by James Watson and Francis Crick, who proposed the spiral-staircase structure in 1953. By adapting nuclear magnetic resonance (NMR) technology, Al-Hashimi's group was able to observe transient, alternative forms in which some steps on the stairway come apart and reassemble into stable structures other than the typical Watson-Crick base pairs.

The question was, what were these alternative stable structures?

"Using NMR, we were able to access the chemical shifts of this alternative form," said graduate student Evgenia Nikolova. "These chemical shifts are like fingerprints that tell us something about the structure." Through careful analysis, Nikolova realized the "fingerprints" were typical of an orientation in which certain bases are flipped 180 degrees.

"It's like taking half of the stairway step and flipping it upside down so that the other face now points up," said Al-Hashimi. "If you do this, you can still put the two halves of the step back together, but now what you have is no longer a Watson-Crick base pair; it's something called a Hoogsteen base pair."

"Using computational modeling, we further validated that individual bases can roll over inside the double helix to achieve these Hoogsteen base pairs," said Ioan Andricioaei, an associate professor of chemistry at the University of California, Irvine.

Hoogsteen base pairs have previously been observed in double-stranded DNA, but only when the molecule is bound to proteins or drugs or when the DNA is damaged. The new study shows that even under normal circumstances, with no outside influence, certain sections of DNA tend to briefly morph into the alternative structure, called an "excited state."

Previous studies of DNA structure have relied mainly on techniques such as X-ray and conventional NMR, which can't detect such fleeting or rare structural changes.

"These methods do not capture alternative DNA structural forms that may exist for only a millisecond or in very little abundance, such as one percent of the time," said Al-Hashimi. "We took new solution NMR methods that previously have been used to study rare deformations in proteins and adapted them so that they could be used to study rare states in nucleic acids. Now that we have the right tools to look at these so-called excited states, we may find other short-lived states in DNA and RNA."

Because critical interactions between DNA and proteins are thought to be directed by both the sequence of bases and the flexing of the molecule, these excited states represent a whole new level of information contained in the genetic code, Al-Hashimi said.

In addition to Al-Hashimi, Nikolova and Andricioaei, the paper's authors are undergraduate student Abigail Wise and assistant professor of biological chemistry Patrick O'Brien of U-M and postdoctoral researcher Eunae Kim of the University of California, Irvine.

The researchers received funding from the National Science Foundation, the National Institutes of Health and the University of Michigan.

More information:

Hashim Al-Hashimi: https://www.chem.lsa.umich.edu/chem/faculty/facultyDetail.php?Uniqname=hashimi

Nature: http://www.nature.com/

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>