Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA catalysts do the work of protein enzymes

19.03.2013
Illinois chemists have used DNA to do a protein’s job, creating opportunities for DNA to find work in more areas of biology, chemistry and medicine than ever before.

Led by Scott Silverman, a professor of chemistry at the University of Illinois at Urbana-Champaign, the researchers published their findings in the journal Proceedings of the National Academy of Sciences.

Ideally, researchers would like to be able to design and build new catalysts from scratch that can do exactly what they want. Many enzymes make small modifications to the building blocks of proteins, amino acids, which can create large changes in a finished protein. However, designing – or even modifying – protein enzymes is a very difficult task, thanks to their complexity and size.

“Protein enzymes are the workhorses of biology,” Silverman said. “They do most of the catalytic activity. Our idea to use another kind of catalyst, artificial DNA sequences, to modify the side chains on proteins, which therefore affects their biological function.”

One of the most important – and difficult – reactions in nature is the addition or removal of a phosphate group. In the realm of proteins, the amino acids serine and tyrosine can have phosphate added to or removed from them, which can alter the protein’s function or turn enzyme activity on or off. Without help from catalysts, such reactions take a very long time to occur – on the order of thousands to millions of years. So nature uses enzymes called kinases or phosphatases to catalyze these reactions.

Silverman’s group identified artificial DNA catalysts that can do phosphatase’s job of removing phosphate from serine and tyrosine. Demonstrating that DNA can catalyze such difficult reactions is an important step forward in designing and using DNA catalysts.

“At this point, this is basic science. We’re trying to figure out, what kind of reactions can DNA catalyze? And how do we find DNA catalysts that can catalyze these reactions?” Silverman said.

To find the DNA catalysts that can perform a phosphatase reaction, the researchers used a process called in vitro selection. This method searches through vast numbers of DNA sequences to identify the few that could perform a specific activity. The researchers then synthesize those DNA strands and use them for various applications.

“We believe that DNA catalysts can be a very useful tool in the future to study these kinds of protein modifications,” said graduate student and co-author Jagadeeswaran Chandrasekar. “To have DNA that you can synthesize on a machine and do catalytic activity on large molecules like proteins is very exciting. We can make fresh new DNA sequences, without requiring a natural starting point, and perform important reactions.”

The researchers tested their DNA catalysts’ activity in the presence of other large, non-specific proteins, to find out if they would function in an environment resembling the cell. The DNA catalysts were not bothered by the extra company, giving the researchers hope that one day their DNA catalysts could be used for practical applications in vivo.

Next, the researchers will continue to refine the in vitro selection process and hope to identify more DNA catalysts, designing and building molecules to perform specific functions.

“This kind of finding is enabling because it shows that DNA catalysis of biologically interesting processes is possible,” Silverman said, “and with this outcome we can have confidence that the broader objectives of this kind of research are likely to be achievable.”

The National Institutes of Health, the Defense Threat Reduction Agency and the National Science Foundation supported this work. Silverman also is a professor of biochemistry and biophysics at the U. of I.

Editor’s notes:
To reach Scott Silverman, call 217-244-4489; email sks@illinois.edu.
The paper, “Catalytic DNA with phosphatase activity,” will be available
on PNAS Early Edition this week.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>