Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Disease Discovered

05.05.2009
In the genetic material of a young woman, an international team of scientists has discovered a genetic defect unknown so far. Due to this defect, the human body is not able any longer to repair certain DNA damages.

The DNA is being damaged continuously: It is affected by solar UV radiation just as by toxic substances from the environment. However, defects also occur during cell division: For this, the DNA has to be doubled and during this complex process defects occur occasionally.

On principle, the organism is able to repair such damages on its own, even serious damages like complete DNA double-strand breaks at the same site. In this case, first the so-called MRN protein complex is called into action: By means of this complex, the damage is detected and signaled to the repair system of the cell.

Important protein complex does not work properly

In the case of the young woman, this important protein complex does not work properly. The scientists are familiar with the complex: It consists of three proteins. For two of them, mutations are known for years. The newly discovered defect concerns the third protein which is referred to as RAD50 and which holds the ends of the DNA break together like a molecular clamp.

"We know the patient and her parents for almost 15 years now" says Prof. Detlev Schindler of the Institute for Human Genetics of the University of Würzburg. At the beginning, the scientists assumed that the girl was suffering from the so-called Nijmegen breakage syndrome (NBS). This congenital disease results from one of the defects of the protein complex known at that time. It is very rare and, statistically speaking, it only affects one in three million people.

Patient not affected by serious complications

The young woman shows symptoms that are typical for this disease: microcephaly, growth retardation as well as physical and mental retardation. In the course of time, it turned out that something was different with that woman, because she was not affected by the serious complications of the disease. She never experienced serious respiratory infections which very often are fatal for NBS patients. Her immune defence is normal. To date, she shows no signs of lymph gland cancer.

Now, the reason for those deviations has been found: The patient does not suffer from NBS, but from a disease which has been unknown so far. The scientists called it "NBS-like disorder". The mutation on which the disease is based has been characterized by the researchers from Würzburg in cooperation with colleagues from Hanover, Magdeburg, Berlin, Israel and Australia.

The woman's organism does not form enough RAD50 proteins. Moreover, the residual proteins do not execute their function sufficiently. "There are a residual quantity and a residual function, and possibly this is the only reason why the patient is still alive", says Detlev Schindler. Because if no RAD50 is available at all for an organism, it dies already as an embryo. This is known from mice showing the defect mentioned above. Perhaps the patient's mutation is so rare that she is one of only few living people suffering from this disease.

Benefits of the findings

What are the benefits of these findings? The patient herself cannot benefit from the findings. However, perhaps they might be helpful for the parents of children for whom there is a suspicion of having the Nijmegen breakage syndrome. Because now, by means of genetic diagnostics it is possible to verify whether they are really suffering from this serious syndrome or from the newly discovered disease.

The research results also offer benefits for science. "We have clarified another step going on during the repair of DNA double-strand breaks and we begin to understand which role it plays", says the professor from Würzburg. Currently, he and his team examine how the RAD50 protein works together with other proteins. This work shall provide further findings concerning the signaling pathways within the cell allowing the organism to eliminate damages of the genetic material.

For further information

Professor Detlev Schindler, Phone ++49 (931) 31-88075, schindler@biozentrum.uni-wuerzburg.de

"Human RAD50 Deficiency in a Nijmegen Breakage Syndrome-like Disorder", Regina Waltes, Reinhard Kalb, Magtouf Gatei, Amanda Kijas, Markus Stumm, Alexandra Sobeck, Britta Wieland, Raymonda Varon, Yaniv Lerenthal, Martin F. Lavin, Detlev Schindler, and Thilo Dörk, The American Journal of Human Genetics (2009), doi: 10.1016/j.ajhg.2009.04.010

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>