Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery Provides New Perspective on Animal Evolution

05.12.2008
A new discovery challenges one of the strongest arguments in favor of the idea that animals with bilateral symmetry—those, that like us have two halves that are roughly mirror images of each other—existed before their obvious appearance in the fossil record during the early Cambrian, some 542 million years ago. Groove-like tracks on the ocean floor made by giant deep-sea single-celled organisms could lead to new insights into the evolutionary origin of animals.

Groove-like tracks on the ocean floor made by giant deep-sea single-celled organisms could lead to new insights into the evolutionary origin of animals.

Biologist Mikhail “Misha” Matz from The University of Texas at Austin and his colleagues, including Dr. Tamara Frank with the Center for Ocean Exploration and Deep-Sea Research, Harbor Branch Oceanographic Institute (HBOI) at Florida Atlantic University, recently discovered grape-sized protists and their complex tracks on the ocean floor near the Bahamas. This is the first time a single-celled organism has been shown to make such animal-like traces. The team’s discovery was recently published online in Current Biology and will also appear in the journal’s December 9 print issue.

The finding is significant, because similar fossil grooves and furrows found from the Precambrian era, as early as 1.8 billion years ago, have always been attributed to early evolving multi-cellular animals.“If our giant protists were alive 600 million years ago and the track was fossilized, a paleontologist unearthing it today would without a shade of doubt attribute it to a kind of large, multi-cellular, bilaterally symmetrical animal,” said Matz, an assistant professor of integrative biology. “We now have to rethink the fossil record.”

The National Oceanographic and Atmospheric Administration’s (NOAA) Office of Ocean Exploration and Research provided several years of significant interdisciplinary funding to the research group involved in this discovery (Operation Deep-Scope 2004, 2005, 2007). The NOAA program provided funds for the scientists to explore unknown or little studied regions of the deep-sea floor using HBOI’s Johnson-Sea-Link (JSL) submersible. The JSL provided a nearly 180 degree unimpeded field of view making it possible for the scientists to see the vast field of “grapes” and their tracks during this expedition.

“The unique collecting tools available on the Johnson-Sea-Link allowed us to gather intact specimens from the sea floor at a depth of 750 meters so that Mikhail could analyze them in his laboratory,” said Frank. “It was a ‘eureka’ moment when he realized that these specimens were giant mobile protists and not fecal pellets as we originally suspected.”

Most animals, from humans to insects, are bilaterally symmetrical, meaning that they can be roughly divided into halves that are mirror images. The bilateral animals, or “Bilateria,” appeared in the fossil record in the early Cambrian about 542 million years ago, quickly diversifying into all of the major animal groups, or phyla, still alive today. This rapid diversification, known as the Cambrian explosion, puzzled Charles Darwin and remains one of the biggest questions in animal evolution to this day. Very few fossils exist of organisms that could be the Precambrian ancestors of bilateral animals, and even those are highly controversial. Fossil traces are the most accepted evidence of the existence of these proto-animals.

“We used to think that it takes bilateral symmetry to move in one direction across the seafloor and thereby leave a track,” said Matz. “You have to have a belly and a backside and a front and back end. Now, we show that protists can leave traces of comparable complexity and with a very similar profile.”

With their find, Matz, Frank and their colleagues argue that fossil traces cannot be used alone as evidence that multi-cellular animals were evolving during the Precambrian, slowly setting the stage for the Cambrian explosion. “I personally think now that the whole Precambrian may have been exclusively the reign of protists,” said Matz. “Our observations open up this possible way of interpreting the Precambrian fossil record.”

Matz says the appearance of all the animal body plans during the Cambrian explosion might not just be an artifact of the fossil record. There are likely other mechanisms that explain the burst-like origin of diverse multi-cellular life forms. DNA analysis confirmed that the giant protist found by Matz and his colleagues in the Bahamas is Gromia sphaerica, a species previously known only from the Arabian Sea.

They did not observe the giant protists in action, and Matz says they likely move very slowly. The sediments on the ocean floor at their particular location are very stable and there are no current—perfect conditions for the preservation of tracks. Matz says the protists probably move by sending leg-like extensions, called pseudopodia, out of their cells in all directions. The pseudopodia then grab onto mud in one direction and the organism rolls that way, leaving a track. He aims to return to the location in the future to observe their movement and investigate other tracks in the area.

Matz says the giant protists’ bubble-like body design is probably one of the planet’s oldest macroscopic body designs, which may have existed for 1.8 billion years.

“Our guys may be the ultimate living fossils of the macroscopic world,” he said.

Florida Atlantic University opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 26,000 undergraduate and graduate students on seven campuses strategically located along 150 miles of Florida's southeastern coastline. Building on its rich tradition as a teaching university, with a world-class faculty, FAU hosts ten colleges: College of Architecture, Urban & Public Affairs, Dorothy F. Schmidt College of Arts & Letters, the Charles E. Schmidt College of Biomedical Science, the Barry Kaye College of Business, the College of Education, the College of Engineering & Computer Science, the Harriet L. Wilkes Honors College, the Graduate College, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>