Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dioxin-like Chemical Messenger Makes Brain Tumors More Aggressive

06.10.2011
Scientists of the German Cancer Research Center (DKFZ) and Heidelberg University Hospital have discovered a new metabolic pathway / Successful research alliance publishes results in Nature

A research alliance of Heidelberg University Hospital and the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), jointly with colleagues of the Helmholtz Center for Environmental Research in Leipzig, have discovered a new metabolic pathway which makes malignant brain tumors (gliomas) more aggressive and weakens patients’ immune systems. Using drugs to inhibit this metabolic pathway is a new approach in cancer treatment. The group’s results have been published in the prestigious specialist journal Nature.


In brain tumor tissue, it is possible to detect both the enzyme TDO (red) and the dioxin receptor AHR (brown) in the same regions. (Staining: Felix Sahm, Neuropathology Dept., Heidelberg University Hospitals. Picture: “Nature”).

Glioma is the most frequent and most malignant brain tumor in adults. In Germany, about 4,500 people are newly diagnosed with glioma every year. About 75 percent of such tumors are considered particularly aggressive with an average life expectancy of eight months to two years. The standard treatment is surgery to remove the tumor as completely as possible, followed by radiotherapy, usually in combination with chemotherapy. However, results are unsatisfactory, because these tumors are very resilient and soon start growing back. Therefore, there is an urgent need for new treatment approaches.

Tumors grow more aggressively and immune system is weakened

The Helmholtz Junior Research Group “Experimental Neuroimmunology” led by Professor Dr. Michael Platten of DKFZ and the Department of Neurooncology of Heidelberg University Hospital and the National Center for Tumor Diseases (NCT) headed by Professor Dr. Wolfgang Wick have come across the kynurenin molecule in their studies of human cancer cells and in the mouse model. Kynurenin is formed when the amino acid tryptophan – a protein component taken in with food – is broken down in the body. “We have been able to detect increased levels of kynurenin in cancer cells of glioma patients with particularly aggressive tumors,” Professor Michael Platten explained. The current research results from Heidelberg show that this link also appears to exist in other types of cancer such as cancers of the bladder, bowel or lungs.

It was even more astonishing for the investigators to find that kynurenin activates a protein known as dioxin receptor. This, in turn, triggers a cascade of chemical reactions which ultimately promote tumor growth and weaken the immune system. So far, it had only been known that the dioxin receptor, scientifically called aryl hydrocarbon receptor (AHR), is activated by environmental toxins. “Why this receptor is even present in body cells and which is its activation partner in the body, was yet unknown,” says Dr. Christiane Opitz, first author of the research article. “Kynurenin seems to have very similar effects as dioxin, but it is formed by the body itself,” said Professor Platten.

Yet another new discovery was presented by the group: The amino acid tryptophan was broken down in cancer cells by a specific enzyme called tryptophan dioxygenase, or TDO for short, which scientists had previously found primarily in liver cells. “It came as a surprise to us that TDO is also active in cancer cells and strongly so in particularly aggressive tumors.”

Searching for substances to specifically inhibit this metabolic pathway

The newly discovered metabolic pathway is a potential target for cancer treatment. The intention is to inhibit tumor growth and strengthen the immune system. “We will start searching for substances that specifically inhibit this metabolic pathway and may be used as potential antitumor drugs,” said Professor Wolfgang Wick envisioning the next steps ahead.

Literature:
Christiane A. Opitz, Ulrike M. Litzenburger, Felix Sahm, Martina Ott, Isabel Tritschler, Saskia Trump, Theresa Schumacher, Leonie Jestaedt, Dieter Schrenk, Michael Weller, Manfred Jugold, Gilles J. Guillemin, Christine L. Miller, Christian Lutz, Bernhard Radlwimmer, Irina Lehmann, Andreas von Deimling, Wolfgang Wick, Michael Platten. An endogenous ligand of the human aryl hydrocarbon receptor promotes tumor formation. DOI: 10.1038/nature10491
Contact:
Prof. Dr. med. Michael Platten
Head of
Helmholtz Group “Experimental Neuroimmunology”
German Cancer Research Center (DKFZ)
Senior Consultant
Department of Neurooncology
University Neurological Hospital Heidelberg National Center for Tumor Diseases
E-mail: michael.platten@med.uni-heidelberg.de
Phone: ++49 (0)6221 56 6804
Prof. Dr. med. Wolfgang Wick
Chairman
Department of Neurooncology
University Neurological Hospital Heidelberg National Center for Tumor Diseases Clinical Cooperation Unit “Neurooncology” (G370) German Cancer Research Center (DKFZ)
E-mail: wolfgang.wick@med.uni-heidelberg.de
Phone: ++49 (0)6221 56 7075

Contacts for journalists:
Heidelberg University Hospital
Dr. Annette Tuffs
Head of Press and Public Relations of
Heidelberg University Hospital and the Medical Faculty of Heidelberg University Im Neuenheimer Feld 672 D-69120 Heidelberg
Phone: +49 6221 56 45 36
Fax: +49 6221 56 45 44
E-mail: Annette.Tuffs@med.uni-heidelberg.de
German Cancer Research Center
Dr. Stefanie Seltmann
Head of Press and Public Relations
Im Neuenheimer Feld 280
D-69120 Heidelberg
Phone: +49 6221 42 2854
Fax: +49 6221 42 2968
E-mail: S.Seltmann@dkfz.de
http://www.dkfz.de
The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,200 staff members, including 1000 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Heidelberg University Hospital and Medical Faculty of Heidelberg University Patient Care, Research and Teaching of International Standing Heidelberg University Hospital is among the largest and most renowned medical centers in Germany. The Medical Faculty of Heidelberg University ranges among the internationally relevant biomedical research institutes in Europe. The common goal is to develop new therapies and to apply them rapidly for the benefit of the patient. Hospitals and Faculty have approximately 10,000 employees and are active in training and qualification. In more than 50 departments, clinics and special departments with about 2,000 hospital beds, approximately 550,000 patients receive inpatient and outpatient treatment each year. There are currently about 3,600 aspiring doctors studying medicine in Heidelberg; the Heidelberg Curriculum Medicinale (HeiCuMed) is at the top of medical teaching and training in Germany.

Dr. Annette Tuffs | idw
Further information:
http://www.klinikum.uni-heidelberg.de
http://www.dkfz.de/de/neuroimmunologie/
http://www.dkfz.de/de/neuroonkologie/

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>