Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The developmental genetics of space and time

16.05.2013
Developmental genes often take inputs from two independent sources
Albert Erives, associate professor in the University of Iowa Department of Biology, and his graduate student, Justin Crocker, currently a postdoctoral researcher at the Howard Hughes Medical Institute (HHMI) Janelia Farm Research Campus, have conducted a study that reveals important and useful insights into how and why developmental genes often take inputs from two independent “morphogen concentration gradients.”

The study appears in the Genomes & Developmental Control section of the online June 1 issue of the journal Developmental Biology. The complete paper can be found at: www.sciencedirect.com/science/article/pii/S0012160613001310.

Understanding the concept of morphogen gradients—the mechanism by which a signal from one part of a developing embryo can influence the location and other variables of surrounding cells—is important to developmental biology, gene regulation, evolution, and human health.

Morphogen gradients subdivide a field of cells into territories characterized by distinct cell fate potentials and allow cells to “know” their position within a developing embryonic tissue and to differentiate appropriately. In order to function, such systems require a genetic mechanism to encode a spectrum of responses at different target genes.

This genetic mechanism takes the form of transcriptional enhancers, which are DNA sequences that display a cryptic code of transcription factor (TF) binding sites. During development and/or environmental perturbation, these enhancers serve as assembly scaffolds for TF protein complexes that orchestrate differential gene expression.

However, enhancers targeted by morphogen signaling may drive temporally inappropriate expression because morphogen gradients also provide temporal cues. That is, the morphogenic gradient builds up and decays over a specific window of developmental time.

Using the powerful Drosophila (fruit fly) genetic system, which includes diverse species with fully sequenced genomes, the Erives Lab identified a case of spatial and temporal conflict in the regulation of the ventral neurons defective (vnd) gene, which must be precisely regulated in order for the fly’s nervous system to be properly specified. The vnd gene is induced by a concentration gradient of a key embryonic factor (dorsal/NFkB) that patterns the dorsal/ventral (D/V) axis of the embryo. In particular, the vnd gene plays a critical role in specifying distinct D/V neural columnar fates of the ectodermal compartments by encoding a repressor of additional regulators.

The role of vnd in this regulatory hierarchy requires early temporal expression, which is characteristic of low-threshold responses, but its specification of ventral neurogenic ectoderm demands a relatively high-threshold response to the morphogen.

The study shows that the vnd gene’s Neurogenic Ectoderm Enhancer (NEE) takes additional input from a complementary gradient of the Dpp morphogen via a highly-conserved Schnurri/Mad/Medea silencer element (SSE), which is integral to its NEE module. In this regard, the NEE at vnd is unlike NEEs at other genetic loci, which are not involved in the neural specification circuit and have no resident SSE. They also show that an SSE could be added to a single-input NEE and cause spatial restriction of its activity. These results show how requirements for conflicting temporal and spatial responses to one morphogen gradient can be solved by additional inputs from complementary morphogen gradients.

The Erives Lab at the UI’s Department of Biology studies the structure, function, and evolution of enhancers within the context of gene regulatory circuits underlying the evolution and development of animals by using molecular, genetic, and evolutionary genomic approaches. Within these areas, the Erives Lab has published several landmark papers notable for demonstrating how whole genome sequences can be used to accelerate biological research on outstanding questions in biology.

The study is supported by an NSF CAREER award to Albert Erives (NSF IOS1239673).
Contact
Albert Erives, Department of Biology, 319-335-2418

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>