Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An in-depth look into spinal cord regeneration

29.12.2011
Scientists develop new methods for the study of spinal cord injury
After spinal cord injury nerve fibers do not regenerate by themselves; loss of neuronal function up to complete paralysis is the consequence.

When investigating new potential therapies, scientists are often confronted with an experimental problem: Neurons are embedded deep into the tissue of the spinal cord and thus difficult to access with microscopy methods. Scientists around Professor Frank Bradke, German Center for Neurodegenerative Diseases (DZNE), have now met this experimental challenge with the development of a new technology. In animal models, they treated the tissue of the spinal cord so that it became permeable to light.

Using this treatment, they were able to investigate the regeneration process under the microscope much faster and far more accurately than it was previously possible. The work was carried out during Bradke’s research period at the Max Planck Institute for Neurobiology (Martinsried) in collaboration with researchers from the Vienna University of Technology and is now published in the prestigious journal Nature Medicine. Since July 2011, Bradke has been at the DZNE in Bonn.

Neurons of the central nervous system are surrounded by a myelin sheath. This sheath protects the nerve cells, but it also prevents their regeneration after injury. What are the factors that hamper regeneration and what can be done to get neurons to nonetheless bridge the lesion gap? These questions are subject to many scientific studies worldwide. Because the spinal cord – even that of mice – is too thick and opaque to investigate it as a whole in the microscope, the tissue was, until now, cut into thin sections prior to analysis. This is not only tedious but also error-prone, because inaccuracies can occur during the assembly of the resulting partial data.

Bradke and his team have developed a method by which the spinal cord of the mouse can be studied as a whole. To this end, the tissue is treated so that it becomes permeable to light. The water content of the tissue is replaced by compounds that refract light in a manner similar to the lipids and proteins of the tissue, so that the light can easily penetrate into the tissue. The researchers combined their method for tissue treatment with advanced microscopy technologies, such as the ultra-microscopy, in which the tissue is illuminated with a strong laser beam from the side.

With their new method Bradke and his colleagues studied the regeneration of neuronal fibers in mice up to one year after the spinal cord was severed. They showed that the neurons of the spinal cord not only show some initial sprouts but also occasionally produce extensions that can overcome the lesion. Nerve cells in the spinal cord are therefore not quite as resistant to regeneration as previously assumed. In addition, Bradke and his colleagues investigated neurons that were stimulated to regenerate by a certain methodical procedure and found that they could trace their trajectories with unprecedented accuracy. In further experiments, the researchers aim to investigate therapeutic options for spinal cord regeneration in more detail.

The enormous advances in cell biology in recent decades can to a large extent be attributed to the development of new microscopy technologies and methods. The development of Bradke and his colleagues is another important step forward in this respect. Moreover, the method is not limited to investigations of the spinal cord. Also other tissues can be rendered more accessible for microscopy with this methodology. It is conceivable, for example, to use the new technology for analyzing the network structure of the brain. This would then also be a valuable tool in the study of neurodegenerative diseases.

Original publication:

Ali Ertürk, Christoph P Mauch, Farida Hellal, Friedrich Förstner, Tara Keck, Klaus Becker,

Nina Jährling, Heinz Steffens, Melanie Richter, Mark Hübener, Edgar Kramer, Frank Kirchhoff, Hans Ulrich Dodt & Frank Bradke. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nature Medicine, published online December 25, 2011. DOI: 10.1038/nm.2600

Contact information:

Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press- and Public Relations
Phone: + 49 (0) 228 43302-263
Mobile: 01735471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht From Receptor Structure to New Osteoporosis Drugs
20.11.2018 | Universität Zürich

nachricht Mutation that causes autism and intellectual disability makes brain less flexible
20.11.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Mutation that causes autism and intellectual disability makes brain less flexible

20.11.2018 | Life Sciences

The sweet side of reproductive biology

20.11.2018 | Life Sciences

Fading stripes in Southeast Asia: First insight into the ecology of an elusive and threatened rabbit

20.11.2018 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>