Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep within spinach leaves, vibrations enhance efficiency of photosynthesis

14.07.2014

Biophysics researchers at the University of Michigan have used short pulses of light to peer into the mechanics of photosynthesis and illuminate the role that molecule vibrations play in the energy conversion process that powers life on our planet.

The findings could potentially help engineers make more efficient solar cells and energy storage systems. They also inject new evidence into an ongoing "quantum biology" debate over exactly how photosynthesis manages to be so efficient.

Through photosynthesis, plants and some bacteria turn sunlight, water and carbon dioxide into food for themselves and oxygen for animals to breathe. It's perhaps the most important biochemical process on Earth and scientists don't yet fully understand how it works.

The U-M findings identify specific molecular vibrations that help enable charge separation – the process of kicking electrons free from atoms in the initial steps of photosynthesis that ultimately converts solar energy into chemical energy for plants to grow and thrive.

"Both biological and artificial photosynthetic systems take absorbed light and convert it to charge separation. In the case of natural photosynthesis, that charge separation leads to biochemical energy. In artificial systems, we want to take that charge separation and use it to generate electricity or some other useable energy source such as biofuels," said Jennifer Ogilvie, an associate professor of physics and biophysics at the University of Michigan and lead author of a paper on the findings that will be published July 13 in Nature Chemistry.

It takes about one-third of a second to blink your eye. Charge separation happens in roughly one-hundredth of a billionth of that amount of time. Ogilvie and her research group developed an ultrafast laser pulse experiment that can match the speed of these reactions. By using carefully timed sequences of ultrashort laser pulses, Ogilvie and coworkers were able to initiate photosynthesis and then take snapshots of the process in real time.

The researchers worked with Charles Yocum, U-M professor emeritus in the Department of Molecular, Cellular and Developmental Biology and the Department of Chemistry, both in the College of Literature, Science, and the Arts to extract what's called the photosystem II reaction centers from the leaves. Located in the chloroplasts of plant cells, photosystem II is the group of proteins and pigments that does the photosynthetic heavy lifting. It's also the only known natural enzyme that uses solar energy to split water into hydrogen and oxygen.

To get a sample, the researchers bought a bag of spinach leaves from a grocery store. "We removed the stems and veins, put it in the blender and then performed several extraction steps to gently remove the protein complexes from the membrane while keeping them intact.

"This particular system is of great interest to people because the charge separation process happens extremely efficiently," she said. "In artificial materials, we have lots of great light absorbers and systems that can create charge separation, but it's hard to maintain that separation long enough to extract it to do useful work. In the photosystem II reaction center, that problem is nicely solved."

The researchers used their unique spectroscopic approach to excite the photosystem II complexes and examine the signals that were produced. In this way, they gained insights about the pathways that energy and charge take in the leaves.

"We can carefully track what's happening," Ogilvie said. "We can look at where the energy is transferring and when the charge separation has occurred."

The spectroscopic signals they recorded contained long-lasting echoes, of sorts, that revealed specific vibrational motions that occurred during charge separation.

"What we've found is that when the gaps in energy level are close to vibrational frequencies, you can have enhanced charge separation," Ogilvie said. "It's a bit like a bucket-brigade: how much water you transport down the line of people depends on each person getting the right timing and the right motion to maximize the throughput. Our experiments have told us about the important timing and motions that are used to separate charge in the photosystem II reaction center."

She envisions using this information to reverse engineer the process - to design materials that have appropriate vibrational and electronic structure to mimic this highly efficient charge separation process.

###

The paper is titled "Vibronic Coherence in Oxygenic Photosynthesis," scheduled for publication online on July 13 in Nature Chemistry. Other co-authors are from Vilnius University and the Center for Physical Sciences and Technology, both in Vilnius, Lithuania. The work is funded by the U.S. Department of Energy, the National Science Foundation and the U-M Center for Solar and Thermal Energy Conversion, as well as the Research Council of Lithuania.

Nicole Casal Moore | Eurek Alert!

Further reports about: Lithuania artificial extract leaves motions photosynthesis photosynthetic spinach steps vibrational

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>