Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Decoding of Slowness

19.07.2011
Zoologists of the University Jena find out how Sloths perfectioned energy saving

They live their lives upside down; instead of defying the force of gravity in an upright position, sloths spend most of their lives hanging in trees upside down. If they have to move, they do so only slowly. Very slowly. But why are sloths so ‘lazy‘? And how has the locomotive system of these outsiders adapted to their unhurried lifestyle in the course of evolution? Zoologists of the Friedrich Schiller University Jena (Germany) have looked into the matter comprehensively.

“To our great surprise the locomotion of the sloths is basically not so different from the locomotion of other mammals, like monkeys for instance, which instead of hanging from tree branches, balance along them”, says Dr. John Nyakatura. In his doctoral thesis at the Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum the evolutionary biologist analyzed the locomotion of sloths with X-ray video equipment. That was not so easy at the beginning, as the first sloth stepping in front of the camera for the Jena scientist simply refused to work. ”Mats, the sloth, just didn’t want to co-operate”, Nyakatura remembers, smiling. Therefore it was given to a zoo and made headlines around the globe as the ‘laziest animal in the world’.

In comparison, the two-toed sloths Julius, Evita and Lisa appeared to be more co-operative. They brachiated along the provided pole in the X-ray tube. “The position of their legs and the bending of their joints matches exactly those of other mammals in the process of walking“, Nyakatura explains. Hence one could imagine the locomotion of sloths actually as ‘walking’ under a tree. Just much slower than other quadrupeds.

However, the evolutionary biologist found distinct differences in the anatomical structure of the animals. “Sloths have very long arms, but only very short shoulder blades (scapulae), being able to move freely on top of a narrow, rounded chest. This lends them a maximum radius of movement“. Moreover a dislocation of certain muscular contact points occurred which enabled them to keep their own body weight with a minimum of energy input. “In the evolution of the sloths the adaptation to the slow, energy saving way of movement occurred solely through their anatomy”, John Nyakatura sums up. What was even more astonishing, this principle developed in two cases independent of each other: in the two-toed sloths and in the three-toed sloths. But although the outward appearance and lifestyle of the animals may lead to the assumption of them being related to each other, these two families are, from an evolutionary point of view, only distant relations.

“With their mode of life the sloths are filling an ecological niche”, adds Prof. Dr. Martin S. Fischer, who oversaw John Nyakatura’s doctoral thesis. “Sloths lead their lives in energy saving mode”. Their usage of energy saving food in connection with an unobtrusive lifestyle turns them into complete ‘models of energy saving’ among the mammals, according to the Jena Professor of systematic zoology and evolutionary biology. And this was a well-known recipe for success – completely unrelated to ‘laziness’.

Meanwhile John Nyakatura and his colleagues are not analyzing sloths any more – those have returned to the Zoo in Dortmund. Now the Jena researchers are applying themselves to the movement of birds.

Contact details:
Dr. John Nyakatura
Institute of Systematic Zoology and Evolutionary Biology with Phyletic Museum
Friedrich Schiller University Jena
Erbertstrasse 1
D-07743 Jena
Phone: ++49 3641 949183
Email: john.nyakatura[at]uni-jena.de

Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/en/start_en.html

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>