Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decoding monkey movements

28.06.2010
High-performance neuroprosthetic devices may result from a new technique for recording neuronal activity

Producing accurate and stable, long-term readings of neuronal activity using a brain–machine interface (BMI) is now possible thanks to work by Naotaka Fujii and his colleagues at the RIKEN Brain Science Institute, Wako1. Their results could help researchers to develop durable and versatile neural prostheses for rehabilitation patients.

BMIs read neural activity associated with planning and executing movements and decode it into commands that are relayed to an external device such as a computer cursor or robotic arm. This normally involves recording simultaneously from multiple, single neurons, so the recordings are unstable and the decoding model needs re-calibration on a daily basis.

Fujii and colleagues used an alternative technique called electrocorticography, in which an array of electrodes is used to record the population activity of cortical neurons.

Electrocorticography is often used to evaluate epileptic patients before neurosurgery but is not normally used for longer than two weeks. It was thought to provide a low fidelity signal for BMIs, because the electrodes record neural activity from the cortical surface, rather than within the cortex.

To overcome this, the researchers designed an electrode array for long-term recording, and developed a novel decoding algorithm that samples neural activity from multiple brain regions.

After implanting the electrodes into the brains of monkeys, so that they spanned multiple brain regions, Fujii and colleagues trained the animals to spontaneously reach out and grasp food presented to them. The monkeys wore custom-made jackets fitted with reflective markers at the shoulders, elbows and wrists. The researchers then recorded the monkeys’ arm movements using a motion capture system, and correlated them with the neuronal activity recorded by the electrodes.

By decoding the signals, they could predict the trajectory and orientation of the monkeys’ arms in three dimensions. The accuracy of the decoding was comparable to that of existing BMIs which record activity from single cells. Furthermore, the recordings were highly stable, and could be decoded for several months without recalibration.

The new recording technique should prove to be useful for researchers investigating movement control and higher cognitive functions. It could also lead to versatile devices that can be implanted for long periods of time, to aid patients with brain damage, spinal cord injury, and neurodegenerative conditions such as amyotrophic lateral sclerosis, notes Fujii.

“Our electrode array is still not ready for long-term use in patients, because of the risk of infection,” says Fujii, “but we are now developing a fully implantable wireless device to prevent this.”

The corresponding author for this highlight is based at the Laboratory for Adaptive Intelligence, RIKEN Brain Science Institute

Journal information

1. Chao, Z.C., Nagasaka, Y. & Fujii, N. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Frontiers in Neuroengineering 3, 3–13 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6315
http://www.researchsea.com

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>