Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decade of Effort Yields Diabetes Susceptibility Gene

10.10.2011
Ten years of meticulous mouse breeding, screening, and record-keeping have finally paid off for Alan Attie and his lab members.

The University of Wisconsin–Madison researchers’ efforts, published Oct. 6 in the journal PLoS Genetics, pinpointed a gene that confers diabetes susceptibility in obese mice.

They also showed that the protein coded by the gene, called tomosyn-2, acts as a brake on insulin secretion from the pancreas.

“It’s too early for us to know how relevant this gene will be to human diabetes,” says Attie, a UW–Madison biochemistry professor, “but the concept of negative regulation is one of the most interesting things to come out of this study and that very likely applies to humans.”

In a properly tuned system, insulin secreted into the blood after eating helps maintain blood sugar at a safe level. Too little insulin (as in type 1 diabetes) or insulin resistance (as in type 2 diabetes) leads to high blood sugar and diabetic symptoms. Too much insulin can drive blood glucose dangerously low and lead to coma or even death in a matter of minutes.

“You can imagine that if you’re in a fasted state, you don’t want to increase your insulin, so it’s very important to have a brake on insulin secretion,” says Angie Oler, one of the lead authors. “It needs to be stopped when you’re not eating and it needs to start again when you do eat.”

The group honed in on tomosyn-2 while searching for genes that contribute to diabetes susceptibility in obese animals.

Why study fat mice?

“It takes more insulin to achieve the same glucose-lowering effect in an obese person than it does in a lean person. If you can produce that extra insulin – and most people do – you’ll be okay. You will avoid diabetes at the expense of having to produce and maintain a higher insulin level,” Attie explains. “Most of the type 2 diabetes that occurs in humans today would not exist were it not for the obesity epidemic.”

But an insufficient insulin response leads to diabetes, and the same is true in mice.

Painstaking genetic analyses and comparisons of obese diabetes-resistant and diabetes-susceptible mouse strains ultimately revealed a single amino acid difference that destabilizes the tomosyn-2 protein in the diabetes-resistant mice, effectively releasing the brake on insulin secretion and allowing those animals to release enough insulin to avoid diabetes.

The researchers also confirmed that the human form of tomosyn-2 inhibits insulin secretion from human pancreatic beta cells.

Though diabetes is highly unlikely to be caused by a single gene, identifying important biological pathways can suggest clinically useful targets. “This study shows the power of genetics to discover new mechanisms for a complex disease like type 2 diabetes,” says postdoctoral fellow Sushant Bhatnagar, a co-lead author of the paper.

“Now we know there are proteins that are negative regulators of insulin secretion. Very likely they do the same thing in human beta cells, and it motivates us to move forward to try to figure out the mechanisms behind that negative regulation,” Attie says.

The American Diabetes Association and the National Institutes of Health provided research funding.

Jill Sakai, jasakai@wisc.edu, (608) 262-9772
Alan Attie, adattie@wisc.edu, (608) 262-1372

Jill Sakai | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht DNA is held together by hydrophobic forces
23.09.2019 | Chalmers University of Technology

nachricht New method for the measurement of nano-structured light fields
23.09.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

On the trail of self-healing processes: Bayreuth biochemists reveal insights into extraordinary regenerative ability

23.09.2019 | Life Sciences

New method for the measurement of nano-structured light fields

23.09.2019 | Life Sciences

Clarification of a new synthesis mechanism of semiconductor atomic sheet

23.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>