Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crystal mysteries spiral deeper, NYU chemists find

10.10.2013
New York University chemists have discovered crystal growth complexities, which at first glance appeared to confound 50 years of theory and deepened the mystery of how organic crystals form. But, appearances can be deceiving.

Their findings, which appear in the latest edition of Proceedings of the National Academy of Sciences, have a range of implications -- from the production of pharmaceuticals and new electronic materials to unraveling the pathways for kidney stone formation.

The researchers focused on L-cystine crystals, the chief component of a particularly nefarious kind of kidney stone. The authors hoped to improve their understanding of how these crystals form and grow in order to design therapeutic agents that inhibit stone formation.

While the interest in L-cystine crystals is limited to the biomedical arena, understanding the details of crystal growth, especially the role of defects -- or imperfections in crystals -- is critical to the advancement of emerging technologies that aim to use organic crystalline materials.

Scientists in the Molecular Design Institute in the NYU Department of Chemistry have been examining defects in crystals called screw dislocations -- features on the surface of a crystal that resemble a spiraled ham.

Dislocations were first posed by William Keith Burton, Nicolás Cabrera, and Sir Frederick Charles Frank in the late 1940s as essential for crystal growth. The so-called BCF theory posited that crystals with one screw dislocation would form hillocks that resembled a spiral staircase while those with two screw dislocations would merge and form a structure similar to a Mayan pyramid -- a series of stacked "island" surfaces that are closed off from each other.

Using atomic force microscopy, the Molecular Design Institute team examined both kinds of screw dislocations in L-cystine crystals at nanoscale resolution. Their results showed exactly the opposite of what BCF theory predicted -- crystals with one screw dislocation seemed to form stacked hexagonal "islands" while those with two proximal screw dislocations produced a six-sided spiral staircase.

A re-examination of these micrographs by Molecular Design Institute scientist Alexander Shtukenberg, in combination with computer simulations, served to refine the actual crystal growth sequence and found that, in fact, BCF theory still held. In other words, while the crystals' physical appearance seemed at odds with the long-standing theory, they actually did grow in a manner predicted decades ago.

"These findings are remarkable in that they didn't, at first glance, make any sense," said NYU Chemistry Professor Michael Ward, one of the authors of the publication. "They appeared to contradict 60 years of thinking about crystal growth, but in fact revealed that crystal growth is at once elegant and complex, with hidden features that must be extracted if it is to be understood. More importantly, this example serves as a warning that first impressions are not always correct."

The research was supported by the National Science Foundation (CHE-0845526, DMR-1105000, and DMR-1206337) and by the NSF Materials Research Science and Engineering Center (MRSEC) Program (DMR-0820341).

NYU's center is one of 27 MRSECs in the country. These NSF-backed centers support interdisciplinary and multidisciplinary materials research to address fundamental problems in science and engineering. For more, go to http://mrsec.as.nyu.edu and http://www.mrsec.org.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>