Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crows React to Threats in Human-Like Way

12.09.2012
Cross a crow and it'll remember you for years.

Crows and humans share the ability to recognize faces and associate them with negative, as well as positive, feelings. The way the brain activates during that process is something the two species also appear to share, according to new research being published this week.

"The regions of the crow brain that work together are not unlike those that work together in mammals, including humans," said John Marzluff, University of Washington professor of environmental and forest sciences. "These regions were suspected to work in birds but not documented until now.

"For example it appears that birds have a region of their brain that is analogous to the amygdala of mammals," he said. "The amygdala is the region of the vertebrate brain where negative associations are stored as memories. Previous work primarily concerned its function in mammals while our work shows that a similar system is at work in birds. Our approach could be used in other animals – such as lizards and frogs – to see if the process is similar in those vertebrates as well."

Marzluff is the lead author of a paper being published the week of Sept. 10 in the online edition of the Proceedings of the National Academy of Sciences.

Previous research on the neural circuitry of animal behavior has been conducted using well-studied, often domesticated, species like rats, chickens, zebra finches, pigeons and rhesus macaques – and not wild animals like the 12 adult male crows in this study.

The crows were captured by investigators all wearing masks that the researchers referred to as the threatening face. The crows were never treated in a threatening way, but the fact they'd been captured created a negative association with the mask they saw. Then for the four weeks they were in captivity, they were fed by people wearing a mask different from the first, this one called the caring face. The masks were based on actual people's faces and both bore neutral expressions so the associations made by the crows was based on their treatment.

In most previous neurological studies of animals, the work usually starts by sedating the animals, Marzluff said. Instead the approach developed by the UW involved injecting a glucose fluid commonly used in brain imaging into the bodies of fully alert crows that then went back to moving freely about their cages. The fluid flooded to the parts of the crow brains that were most active as they were exposed for about 15 minutes to someone wearing either the threatening or caring mask.

Then the birds were sedated and scans made of their brains. All the birds were returned to the wild once all the work was completed.

"Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior," wrote Marzluff and co-authors Donna Cross, Robert Miyaoka and Satoshi Minoshima, all faculty members with the UW's radiology department. The department funded the preliminary work while the main project was conducted using money from theUW's Royalty Research Fund.

Most neurological studies to date in birds have concerned their songs – how their brain registers what they hear, how they learn and come up with songs of their own. This new approach enables researchers to study the visual system of birds and how the brain integrates visual sensation into behavioral action, Marzluff said.

Among other things the findings have implications for lowering the stress of captive animals, he said.

"By feeding and caring for birds in captivity their brain activity suggests that the birds view their keepers as valued social partners, rather than animals that must be feared. So, to keep captive animals happy we need to treat them well and do so consistently," he said.

Intriguingly, Marzluff said the findings might also offer a way to reduce conflict between birds and endangered species on which they might be feeding. In the Mojave Desert, for instance, ravens prey on endangered desert tortoises. And on the West and East coasts, crows and ravens prey on threatened snowy plovers.

"Our studies suggest that we can train these birds to do the right thing," Marzluff said. "By paring a negative experience with eating a tortoise or a plover, the brain of the birds quickly learns the association. To reduce predation in a specific area we could train birds to avoid that area or that particular prey by catching them as they attempt to prey on the rare species."

The partnering of neuroscientists with ecologists could be used to better understand the neural basis of cognition in widely diverse animals, said co-author Cross. For example, her suggestion to use the glucose technique prior to brain scans, so the crows could be fully awake, could be used for other animals.

"This was a true collaboration that would never be possible without the people that were involved with very different areas of expertise," she said.

For more information:
Marzluff, 206 616-6883, corvid@uw.edu
Cross, 206-598-3702, dcross@uw.edu
Suggested websites:
--PNAS abstract of paper
http://www.pnas.org/content/early/2012/09/05/1206109109.abstract
--Marzluff
http://www.cfr.washington.edu/SFRPublic/People/FacultyProfile.aspx?PID=10
--UW School of Environmental and Forest Science
http://www.cfr.washington.edu/
--Donna Cross
http://www.rad.washington.edu/radiology-personnel/dcross
--Robert Miyaoka
http://www.rad.washington.edu/radiology-personnel/rmiyaoka/?searchterm=Miyaoka
--Satoshi Minoshima
http://www.rad.washington.edu/radiology-personnel/
minoshim/?searchterm=Satoshi%20Minoshima
--Department of Radiology
http://www.rad.washington.edu/
--UW's Royalty Research Fund
http://www.washington.edu/research/?page=rrf

Sandra Hines | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>