Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cretaceous octopus with ink and suckers -- the world's least likely fossils?

19.03.2009
New finds of 95 million year old fossils reveal much earlier origins of modern octopuses. These are among the rarest and unlikeliest of fossils. The chances of an octopus corpse surviving long enough to be fossilized are so small that prior to this discovery only a single fossil species was known, and from fewer specimens than octopuses have legs.

Everyone knows what an octopus is. Even if you have never encountered one in the flesh, the eight arms, suckers, and sack-like body are almost as familiar a body-plan as the four legs, tail and head of cats and dogs.

Unlike our vertebrate cousins, however, octopuses don't have a well-developed skeleton, and while this famously allows them to squeeze into spaces that a more robust animal could not, it does create problems for scientists interested in evolutionary history. When did octopuses acquire their characteristic body-plan, for example? Nobody really knows, because fossil octopuses are rarer than, well, pretty much any very rare thing you care to mention.

The body of an octopus is composed almost entirely of muscle and skin, and when an octopus dies, it quickly decays and liquefies into a slimy blob. After just a few days there will be nothing left at all. And that assumes that the fresh carcass is not consumed almost immediately by hungry scavengers. The result is that preservation of an octopus as a fossil is about as unlikely as finding a fossil sneeze, and none of the 200-300 species of octopus known today has ever been found in fossilized form. Until now, that is.

Palaeontologists have just identified three new species of fossil octopus discovered in Cretaceous rocks in Lebanon. The five specimens, described in the latest issue of the journal Palaeontology, are 95 million years old but, astonishingly, preserve the octopuses' eight arms with traces of muscles and those characteristic rows of suckers. Even traces of the ink and internal gills are present in some specimens. 'These are sensational fossils, extraordinarily well preserved' says Dirk Fuchs of the Freie University Berlin, lead author of the report. But what surprised the scientists most was how similar the specimens are to modern octopus: 'these things are 95 million years old, yet one of the fossils is almost indistinguishable from living species." This provides important evolutionary information.

"The more primitive relatives of octopuses had fleshy fins along their bodies. The new fossils are so well preserved that they show, like living octopus, that they didn't have these structures.' This pushes back the origins of modern octopus by tens of millions of years, and while this is scientifically significant, perhaps the most remarkable thing about these fossils is that they exist at all.

Dr. Dirk Fuchs | EurekAlert!
Further information:
http://www.fu-berlin.de
http://www.palass.org

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>