Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals turn to algae for stored food when times get tough

14.05.2013
Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low

Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low.

The relationship between corals and the microscopic algae they harbor is a classic example of biological symbiosis - the mutually beneficial interaction of two species. But crucial details regarding their relationship have remained elusive until now. Using state-of-the-art imaging techniques, Anders Meibom and his team of researchers in the Laboratory for Biological Geochemistry have found new evidence on the vital role algae play in helping corals survive in environments where nutrients are scarce. Their findings were published in the journal mBio on May 16, 2013.

"Coral reefs are the jungles of our oceans - hotspots of biodiversity that easily outcompete all other marine ecosystems," says Christophe Kopp, first-author of the publication. Coral bleaching occurs when the colorful algae abandon their coral host because of environmental strains like rising sea temperatures. On their own, corals struggle to survive in tropical waters where nutrients are scarce, and persistent starvation can have irreversible effects. While it is well known that algae help corals to assimilate certain nutrients, such as nitrogen from seawater, how this occurs, and to what extent the corals can get by on their own, are less clear.

To study how nitrogen-rich nutrients are taken up and processed by the corals and the algae that inhabit them, Meibom's research group teamed up with the Aquarium Tropicale Porte Dorée in Paris to run a series of experiments. There, they fed the corals nitrogen-rich compounds labeled with a heavy nitrogen isotope that they could later trace in the lab. Every few minutes, they extracted bits of coral, which they fixed and analyzed with a state-of-the-art isotopic imaging instrument, a so-called NanoSIMS.

Next, they assembled a timeline of how the nitrogen is processed by the corals and their resident algae by lining up the images of the samples extracted at different times. A combination of electron microscopy and mass spectrometry allowed them to study with unprecedented precision into which cellular compartments the heavier nitrogen isotopes had been incorporated.

Crystal food banks

The research revealed that the corals depend strongly on the algae to extract sufficient nutrients from the water. This was particularly true when the corals were exposed to nitrate, a compound that they are unable to process and assimilate on their own.

But most interestingly, the scientists observed that the algae act as tiny food banks. Their images revealed that the algae temporarily store the nitrogen in the form of uric acid crystals – a fact they later confirmed using crystallographic analysis. This way, the algae can stock up on nutrients when supply is abundant and draw on them when supply drops, leaching some out to their coral host.

Because coral reefs are at the foundation of immense economic activity, both as tourist magnets and as the habitats of some of the most productive fish populations, understanding their fate as the environment they inhabit changes is not only of ecological, but also of economic importance.

The research was performed in close collaboration with EPFL's Interdisciplinary Centre For Electron Microscopy (CIME), the Institute of Earth Science at the University of Lausanne, as well as the Aquarium Tropicale Porte Dorée and the Muséum d'Histoire Naturelle in Paris. The work is funded by an ERC Advanced grant and by a grant from the Swiss National Science Foundation.

Anders Meibom | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>