Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Corals turn to algae for stored food when times get tough

14.05.2013
Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low

Researchers at EPFL present new evidence for the crucial role of algae in the survival of their coral hosts. Ultra-high resolution images reveal that the algae temporarily store nutrients as crystals, building up reserves for when supplies run low.

The relationship between corals and the microscopic algae they harbor is a classic example of biological symbiosis - the mutually beneficial interaction of two species. But crucial details regarding their relationship have remained elusive until now. Using state-of-the-art imaging techniques, Anders Meibom and his team of researchers in the Laboratory for Biological Geochemistry have found new evidence on the vital role algae play in helping corals survive in environments where nutrients are scarce. Their findings were published in the journal mBio on May 16, 2013.

"Coral reefs are the jungles of our oceans - hotspots of biodiversity that easily outcompete all other marine ecosystems," says Christophe Kopp, first-author of the publication. Coral bleaching occurs when the colorful algae abandon their coral host because of environmental strains like rising sea temperatures. On their own, corals struggle to survive in tropical waters where nutrients are scarce, and persistent starvation can have irreversible effects. While it is well known that algae help corals to assimilate certain nutrients, such as nitrogen from seawater, how this occurs, and to what extent the corals can get by on their own, are less clear.

To study how nitrogen-rich nutrients are taken up and processed by the corals and the algae that inhabit them, Meibom's research group teamed up with the Aquarium Tropicale Porte Dorée in Paris to run a series of experiments. There, they fed the corals nitrogen-rich compounds labeled with a heavy nitrogen isotope that they could later trace in the lab. Every few minutes, they extracted bits of coral, which they fixed and analyzed with a state-of-the-art isotopic imaging instrument, a so-called NanoSIMS.

Next, they assembled a timeline of how the nitrogen is processed by the corals and their resident algae by lining up the images of the samples extracted at different times. A combination of electron microscopy and mass spectrometry allowed them to study with unprecedented precision into which cellular compartments the heavier nitrogen isotopes had been incorporated.

Crystal food banks

The research revealed that the corals depend strongly on the algae to extract sufficient nutrients from the water. This was particularly true when the corals were exposed to nitrate, a compound that they are unable to process and assimilate on their own.

But most interestingly, the scientists observed that the algae act as tiny food banks. Their images revealed that the algae temporarily store the nitrogen in the form of uric acid crystals – a fact they later confirmed using crystallographic analysis. This way, the algae can stock up on nutrients when supply is abundant and draw on them when supply drops, leaching some out to their coral host.

Because coral reefs are at the foundation of immense economic activity, both as tourist magnets and as the habitats of some of the most productive fish populations, understanding their fate as the environment they inhabit changes is not only of ecological, but also of economic importance.

The research was performed in close collaboration with EPFL's Interdisciplinary Centre For Electron Microscopy (CIME), the Institute of Earth Science at the University of Lausanne, as well as the Aquarium Tropicale Porte Dorée and the Muséum d'Histoire Naturelle in Paris. The work is funded by an ERC Advanced grant and by a grant from the Swiss National Science Foundation.

Anders Meibom | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>