Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper-free click chemistry used in mice

20.01.2010
For the first time, the widely used molecular synthesis technique known as click chemistry has been safely applied to a living organism.

Researchers with Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have crafted a unique copper-free version of click chemistry to create biomolecular probes for in vivo studies of live mice. Conventional click chemistry reactions require a copper catalyst that is toxic to cells and organisms.

“We developed a variant of the click chemistry reactions that possesses comparable kinetics to the conventional copper-catalyzed reactions, only without the requirement of a toxic metal,” says Carolyn Bertozzi, a Berkeley Lab-UC Berkeley chemist who leads this research. “Our latest studies have now established copper-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse.”

Bertozzi and her research group used copper-free click chemistry to label glycans in a variety of mouse tissues including the intestines, heart and liver. Glycans are sugars that are ubiquitous to living organisms and abundant on the surfaces of cells. They are central to the signaling that takes place between cells during development and are also involved in bacterial and viral infections, as well as the immune system’s response to such infections.

“There is great scientific interest in monitoring the dynamics of glycans as they move about within cells and on the cell surface, but the means to tag glycans with imaging probes in living organisms has been lacking,” says Bertozzi, who is the director of Berkeley Lab’s Molecular Foundry, a faculty scientist with Berkeley Lab’s Materials Sciences and Physical Biosciences Divisions, and the T.Z. and Irmgard Chu Distinguished Professor of Chemistry as well as a professor of Molecular and Cell Biology at UC Berkeley. She is also an investigator with the Howard Hughes Medical Institute (HHMI).

For the past decade, Bertozzi, a leading authority on glycobiology, has worked with various collaborators to devise means by which glycans can be used for molecular imaging in living cells and organisms.

“Molecular imaging reveals a wealth of information about biomolecules in their native environments and glycans are appealing targets for molecular imaging,” she says. “A major focus of my research has been the development of chemical approaches for probing the functions of glycans in cell-based systems, and the application of these tools to studies of glycobiology.”

Two years ago, Bertozzi and her research group developed the first copper-free variant of the click chemistry reactions, which they used to probe glycan dynamics in living cells and in live zebrafish embryos. Now they have applied copper-free click chemistry to the laboratory mouse, which is widely regarded as the model organism for studying human pathology.

The results of this latest development have been published in the Proceedings of the National Academy of Sciences (PNAS) in a paper titled, “Copper-free click chemistry in living animals.” Co-authoring the paper with Bertozzi were Pamela Chang, Jennifer Prescher, Ellen Sletten, Jeremy Baskin, Isaac Miller, Nicholas Agard and Anderson Lo.

Chemistry with a Click

Click chemistry is best known for a copper-catalyzed azide-alkyne reaction that makes it possible for certain chemical building blocks to “click” together in an irreversible linkage, analagous to the snapping together of Lego blocks. Since its introduction in 2001 by the Nobel laureate chemist Barry Sharpless of the Scripps Research Institute, the copper-catalyzed azide-alkyne reaction has proven extremely valuable for attaching small molecular probes to various biomolecules in a test tube or on fixed cells. However, it can’t be used for biomolecule labeling in live cells or organisms because of copper’s toxicity.

Earlier work by Bertozzi and her group had shown that glycans can be metabolically labeled with azides – a functional group featuring three nitrogen atoms – via a reaction they devised, which they called the Staudinger ligation. To apply click chemistry to glycans, she and her colleagues designed a ring-shaped molecule, called difluorinated cyclooctyne or DIFO, that reacts with azides rapidly at physiological temperatures without the need for a toxic catalyst.

“This copper-free click reaction of azides and DIFO combines the biocompatibility of the Staudinger ligation with the fast reaction kinetics of click chemistry,” Bertozzi says.

To apply their copper-free click chemistry to living mice, Bertozzi and her group delivered azides to the surfaces of target cells within the mice via a metabolic precursor, then labeled select glycans(those that bore corresponding azido sialic acids) by covalent reaction in vivo with a panel of cyclooctyne-FLAG peptide conjugates. The labeled biomolecules were probed by ex vivo analysis of cells and tissue lysates.

“The relative amounts of ligation products observed with different cyclooctynes suggest that both intrinsic reaction kinetics and other properties such as solubility and tissue access govern the efficiency of copper-free click chemistry,” Bertozzi says. “More broadly, copper-free click chemistry appears to possess the requisite bioorthogonality to achieve specific biomolecule labeling in this important model organism.”

This research was primarily supported by a grant from the National Institutes of Health.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

Additional Information

The paper “Copper-free click chemistry in living animals” is on the PNAS Wesbite at

http://www.pnas.org/content/early/2010/01/07/0911116107.full.pdf+html

For more about the research of Carolyn Bertozzi, visit her Website at www.cchem.berkeley.edu/crbgrp/

For more about Berkeley Lab’s Molecular Foundry visit the Website at http://foundry.lbl.gov

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>