Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computational Tools Will Help Identify Microbes in Complex Environmental Samples

03.12.2014

Microbes of interest to clinicians and environmental scientists rarely exist in isolation. Organisms essential to breaking down pollutants or causing illness live in complex communities, and separating one microbe from hundreds of companion species can be challenging for researchers seeking to understand environmental issues or disease processes.

A new National Science Foundation-supported project will provide computational tools designed to help identify and characterize the gene diversity of the residents of these microbial communities. The project, being done by researchers at the Georgia Institute of Technology and Michigan State University, will allow clinicians and scientists to compare the genomic information of organisms they encounter against the growing volumes of data provided by the world’s scientific community.


Credit: K. Konstantinidis and D. Tsementzi, Georgia Tech

Georgia Tech graduate students Despina Tsementzi and Miguel Rodriguez prepare to sample water from Lake Seminole in Georgia, one of the lakes on the Chattahoochee River system. The water samples will be used to study microbial communities as part of research in the laboratory of Kostas Konstantinidis at Georgia Tech.

The tools will be hosted on a web server designed to be used by researchers who may not have training in the latest bioinformatics techniques. A prototype system containing a limited number of computational tools is already available at http://enve-omics.ce.gatech.edu and is attracting more than 500 users each month.

“Across many areas of science, we are dealing with communities of microorganisms, and one challenge we’ve had is to identify them because we haven’t had good tools to tell apart individual microbes from the mixtures,” said Kostas Konstantinidis, an associate professor in the School of Civil and Environmental Engineering at Georgia Tech and the project’s principal investigator. “Our tools will be designed to deal with the genomes of whole communities of organisms.”

Current techniques identify individual microbes by examining their small subunit ribosomal RNA (SSU rRNA) genes, but the new tools will allow scientists to analyze entire genomes and meta-genomes.

“With the dawn of the genomic era, we can now get the whole genome of these organisms to see not only the ribosomal RNA, but also all the genes in the genome to get a better understanding of what the each organism’s potential might be,” said Konstantinidis. “There will be many advantages for looking at all the genes instead of just one, the SSU rRNA, such as to identify which organisms encode toxins or the enzymes for breaking down pollutants.”

Collaborators on the three-year project include scientists who operate the Ribosomal Database Project at Michigan State University: Jim Tiedje, director of Michigan State University’s Center for Microbial Ecology and James Cole, a Michigan State University research assistant professor and director of the Ribosomal Database Project.

The ability to identify and enumerate the organisms in complex communities using culture-independent, genomic technologies and associated bioinformatics algorithms is becoming more important as scientists study organisms that can’t be grown in the lab. The majority of the world’s organisms resist traditional lab culture, meaning they have to be studied in the field and identified through genetic information.

Konstantinidis and his research group are studying such communities in the water of lakes in Chattahoochee River system in Georgia and elsewhere. They are examining how these communities respond to perturbations, such as oil or pesticide spills, and the role that different members of the community play in breaking down pollutants.

“These tools actually come from our research practice,” said Konstantinidis. “We came to the point where we couldn’t process the data to answer the questions we wanted to ask. That led us to this new project to develop the tools we and others need to interrogate the data and get the information we are looking for.”

A single liter of lake water may contain as many as 500 different species, and together, their genomic information can total tens of billions of gene-coding letters. From Lake Lanier alone, the team has generated 200 gigabytes of genomic data.

“We want to figure out what organisms are there, and what genes they encode,” Konstantinidis explained. “The tools we are developing will allow us to do this.”

The tools developed in the project will be useful to both clinical microbiologists and environmental researchers. “This will not be specific to any one discipline,” he said. “As long as people are working with microbes, this will be helpful to them because some of the questions are universal.”

The system will also be built to provide user-friendly help to scientists who may not have training in the latest genomic and bioinformatics techniques. “There is a big need for big data analysis, and there are not many trained people right now,” Konstantinidis said. “These tools will make the lives of researchers easier.”

Among the challenges ahead is building an infrastructure able to handle the growing amounts of genomic information produced worldwide.

“We will have to develop some computational solutions for the problems of keeping up with all the new data becoming available,” said Konstantinidis. “We need to make tools that have high throughput to keep up with data volumes that are increasing geometrically.”

The system will initially operate on servers at Georgia Tech and Michigan State University, but if demand and data grow, additional resources may be sought, such as the National Science Foundation’s XSEDE supercomputer.

This research is supported by the National Science Foundation under award DBI-1356288. The opinions expressed in this article are those of the authors and do not necessarily reflect the official views of the National Science Foundation.

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA

Media Relations Contacts: John Toon (404-894-6986) (jtoon@gatech.edu) or Brett Israel (404-385-1933) (brett.israel@comm.gatech.edu).

Writer: John Toon

John Toon | newswise
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>