Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compounds shown to thwart stubborn pathogen's social propensity

22.08.2012
Acinetobacter baumanni, a pathogenic bacterium that is a poster child of deadly hospital acquired infections, is one tough customer.

It resists most antibiotics, is seemingly immune to disinfectants, and can survive desiccation with ease. Indeed, the prevalence with which it infects soldiers wounded in Iraq earned it the nickname "Iraqibacter."

In the United States, it is the bane of hospitals, opportunistically infecting patients through open wounds, catheters and breathing tubes. Some estimates suggest it kills tens of thousands of people annually.

But like many species of bacteria, A. baumanni is a social creature. In order to unleash its pathogenic potential, current research suggests that it must accumulate into large colonies or aggregate into "biofilms." To do this, it uses a microbial trick called quorum sensing, where chemical signals are used by the bacterium to gather and sense a critical mass of cells, which then act in unison to exert virulence, which in human patients can manifest itself in the form of pneumonia as well as urinary tract and blood infections.

Interfering with the quorum sensing behavior, some scientists think, may prove to be the Achilles heel of A. baumanni and other microbial pathogens, and new research by chemists at the University of Wisconsin-Madison now gives traction to that idea.

In a study by UW-Madison chemistry Professor Helen Blackwell and her colleagues, and published online in the journal ACS Chemical Biology, certain small molecule chemicals that can disrupt quorum sensing in A. baumanni have been identified, providing a glimmer of hope that the stubborn pathogen can be tamed.

"Right now, there are no approved drugs out there to modulate (quorum sensing), explains Blackwell, a leading expert on the phenomenon in microbes. "The strategy is not to kill the bacterium, but to keep it from behaving badly."

Blackwell explains that A. baumanni and other bacterial pathogens behave differently once a certain population threshold is crossed: "When working as a group, they initiate behaviors different from those observed in an individual cell. They have the ability to take on more complex tasks, and many pathogens use quorum sensing to initiate certain group behaviors."

In A. baumanni and other troublesome microbes, those behaviors include increased virulence and the ability to form biofilms, a state that in A. baumanni is linked it its ability to persist on surfaces, sometimes for weeks at a time, and withstand antibiotic treatment.

Quorum sensing is governed by chemical signaling, notes Blackwell. Bacteria can get a sense of how many cells have gathered by assessing the concentration of chemical signals that they emit. By interfering with those signals, it may be possible to control behaviors such as biofilm formation and movement and thereby limit the virulence of A. baumanni.

"The way a quorum sensing modulator would work is that it wouldn't kill (the microbes), it would just just keep them from behaving badly," says Blackwell.

Combing libraries of potential quorum sensing modulators, Blackwell and her colleagues have identified a handful of compounds that effectively disrupt the signaling pathway A. baumanni depends on.

Although the compounds look promising, Blackwell emphasizes that they will likely find their first use in the lab as research tools. Quorum sensing is still not well understood, she explains, and much more research needs to be done before these compounds or others can be deployed in hospitals and other settings to disrupt deadly pathogens.

However, Blackwell expressed confidence that more such quorum sensing compounds remain to be found and next-generation agents may then be ready to tackle pathogens that are rapidly evolving resistance to our best drugs.

In addition to Blackwell, co-authors of the new research include graduate students Danielle M. Stacy and Michael A. Welsh, also of UW-Madison's Department of Chemistry; and Prof. Philip N. Rather of Emory University. The work was funded by the National Institutes of Health, the Greater Milwaukee Foundation Shaw Scientist Program, the Burroughs Wellcome Fund, and Johnson & Johnson.

–Terry Devitt, 608-262-8282, trdevitt@wisc.edu

Helen Blackwell | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>