Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Combating Iron in the Brain: Researchers Find Anti-Aging Micromolecule

14.02.2017

During aging as well as during Alzheimer’s or Parkinson’s disease, iron accumulates in the human brain. Now, researchers from German Leibniz Institute on Aging (FLI) in Jena and Italian Scuola Normale Superiore in Pisa found that in vertebrates, a microRNA called miR-29 inhibits these deposits – possibly offering new ways to treat Alzheimer’s and Parkinson’s disease as well as strokes. Results were published in the Journal BMC Biology on February 13, 2017.

MicroRNA as anti-aging molecule in brain


The aging model N. furzeri was used to show that neurons are protected from iron-accumulation by an anti-aging microRNA.

credit: FLI/Grimm/Kästner

The older we get, our brain ages. Cognitive abilities decline and the risk of developing neurodegenerative diseases like dementia, Alzheimer’s and Parkinson’s disease or having a stroke steadily increases. A possible cause is the accumulation of iron molecules within neurons, which seems to be valid for all vertebrates.

In a collaborative research project within the consortium JenAge, researchers from the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, and the Scuola Normale Superiore (SNS) in Pisa, Italy, found that this iron accumulation is linked to a microRNA called miR-29. This little molecule has so far been known to act as a tumor suppressor, hindering the proliferation of cancer cells. However, clearly, miR-29 also regulates whether or not iron can be deposited in neurons.

Using the African fish Nothobranchius furzeri – the shortest-living vertebrate that can be kept under laboratory conditions – the team of Alessandro Cellerino showed a large increase of iron deposits in fish where miR-29 had been suppressed, which led to premature brain aging. In contrast, healthy fish showed the more miR-29 in their neurons, the older they were. Hence, miR-29 acts as a kind of anti-aging molecule during aging, inhibiting the accumulation of iron in neurons.

New therapeutic approach for the treatment of neurodegenerative diseases and strokes

„We strongly believe that our results are relevant for humans as well“, says Alessandro Cellerino, Professor of Physiology at SNS in Pisa and guest scientist at the FLI, who is one of the study’s leaders. In fact, the link between an increased iron accumulation and neurodegenerative diseases or strokes in humans has been known for some time; there are also results showing a reduced concentration of miR-29 in these diseases. However, it is totally new that miR-29 acts as molecular switch that inhibits iron accumulation.

“These results are surprising – and very promising, because the development of miR-29-based pharmaceuticals for cancer therapy is already ongoing. This may offer a head start for the development of new therapies for Parkinson’s or Alzheimer’s disease and for the treatment of strokes as well”, Cellerino adds.

First biomedical discovery in the young aging model “N. furzeri“

African killifish Nothobranchius furzeri has only recently been introduced as animal model in aging research. It was the deciphering of the fish’s genome in late 2015 by the Leibniz Institute on Aging (FLI) that laid the foundation for genetic studies in this fast-aging vertebrate. “The investment of ten years, which it took us and our collaborators to decipher the genome, now starts to pay off”, explains Prof. K. Lenhard Rudolph, who is the FLI’s Scientific Director.

And Mario Baumgart, a Postdoc at the FLI that was involved in the study, adds: “There’s no other vertebrate showing such a rapid aging as this little fish. It is like aging in fast motion. Moreover, 90% of human genes can be found in the fish as well, making almost all knowledge gained from N. furzeri transferable to humans.” This is why the results about the molecular switch miR-29, which were published on February 13, 2017 in the journal BMC Biology are so promising and mean a further step towards the treatment of neurodegenerative diseases.

Publication

Ripa R, Dolfi L, Terrigno M, Pandolfini L, Savino A, Arcucci V, Groth M, Terzibasi Tozzini E, Baumgart M, Cellerino A. MicroRNA miR-29 controls a compensatory response to limit neuronal iron
accumulation during adult life and aging. BMC Biology 2017, 15:9, DOI: 10.1186/s12915-017-0354-x.

Contact

Dr. Evelyn Kästner
Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) | Beutenbergstr. 11 | 07745 Jena, Germany
p. +49 3641-656373, e. presse@leibniz-fli.de

Andrea Pantani
Scuola Normale Superiore Pisa | Piazza dei Cavalieri, 7 | 56126, Pisa, Italy
p. +39 050 509324, e. andrea.pantani@sns.it


Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

The Scuola Normale Superiore was founded by Napoleonic decree in October, 1810. The Scuola Normale Superiore is a public institute for higher education that in its two centuries of life has earned itself a special place, both in Italy and abroad, a place characterised by merit, talent and scientific rigour. The teaching and research activities are distributed among three academic structures, the Faculty of Humanities, the Faculty of Mathematical and Natural Sciences, placed in Pisa, and the Institute of Humanities and Social Sciences, located in Palazzo Strozzi in Florence. For more information, please visit http://www.SNS.it.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>