Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choreographing the microRNA-target dance

24.01.2017

Scientists face a conundrum in their quest to understand how microRNAs regulate genes and therefore how they influence human disease at the molecular level: How do these tiny RNA molecules find their partners, called messenger RNAs, on a crowded cellular dancefloor?

MicroRNAs pair up with messenger RNAs to turn down the production of proteins. But there are far more of the messenger RNAs in the crowd, leaving scientists to ponder how the microRNAs can efficiently regulate a large excess of messenger RNA partners.


Glowing cells express green fluorescent protein, which scientists used along with gene-editing techniques to uncover a new microRNA mechanism.

Credit: UT Southwestern Medical Center

Molecular biologists at UT Southwestern Medical Center were able to uncover a new mechanism that choreographs this complex molecular dance by applying the latest in gene editing technology combined with a traditional method of making a microRNA target produce a fluorescent green protein. The successful "dance move" - called Argonaute phosphorylation - enables a microRNA to switch messenger RNA dance partners more efficiently.

"Our research addresses a fundamental question regarding how a microRNA is able to regulate a large set of target messenger RNAs, even though the microRNA is greatly outnumbered," said Dr. Joshua Mendell, Professor of Molecular Biology and a Howard Hughes Medical Institute Investigator at UT Southwestern.

The microRNA pathway is critically important to health and disease, serving as a kind of volume control for genes, dialing down the expression of specific proteins, said Dr. Mendell, a CPRIT Scholar in Cancer Research. UTSW researchers have previously found, for example, that defects in the microRNA pathway contribute to certain childhood cancers and specific microRNAs can accelerate or inhibit cancer by regulating tumor suppressor or tumor promoting genes. MicroRNAs play important roles in many other diseases including heart disease.

CRISPR gene editing technology allowed the scientists to switch off a different gene in each cell across millions of cells. Cells became more fluorescent when genes that impacted the microRNA pathway were switched off, leading scientists to the discovery of the new phosphorylation mechanism involved in controlling microRNA-target interactions.

"This research uncovered a new and fundamental aspect of the microRNA pathway in which phosphate molecules are rapidly added and removed from key proteins in the pathway. We believe this mechanism allows microRNAs to engage target messenger RNAs, silence them, and then efficiently move on to the next target," said first author Ryan Golden a student in the Medical Scientist Training Program at UT Southwestern and a member of the Mendell lab.

In addition to shedding new light on the microRNA pathway, researchers say the distinctive combination of techniques used to decipher the pathway should be widely applicable to other biological questions, allowing labs to quickly identify critical components of important genetic pathways.

"This study represents the first time this experimental strategy has been used to study the microRNA pathway on a genome-wide scale. It is a very powerful approach. This work lays out a methodology that could be used to study many different biomedical problems," said Dr. Mendell, a member of the Harold C. Simmons Comprehensive Cancer Center.

###

The work, published in the journal Nature, was supported by the Howard Hughes Medical Institute and grants from Cancer Prevention and Research Institute of Texas (CPRIT), the National Institutes of Health, the Cancer Research Institute, and the Leopoldina Fellowship Program from the German National Academy of Sciences Leopoldina.

Collaborators included researchers with the Eugene McDermott Center for Human Growth and Development; Next Generation Sequencing Core; the UT Southwestern Flow Cytometry Core; the UT Southwestern Protein Chemistry Technology Core; the Quantitative Biomedical Research Center; the Harold C. Simmons Comprehensive Cancer Center; the Hamon Center for Regenerative Science and Medicine; and the Center for the Genetics of Host Defense.

Researchers were Ryan J. Golden, first author and graduate student researcher in the Medical Scientist Training Program; graduate student researchers Hema Manjunath, Andres Ramirez-Martinez, and Jiaxi Wu; postdoctoral researchers Dr. Tuo Li, Dr. Juliane Braun, and Dr. Florian Kopp; Beibei Chen, computational biologist; Dr. Xiang Chen, research specialist; Vanessa Schmid, manager of the McDermott Center Next Generation Sequencing Core; Dr. Tsung-Cheng Chang, Assistant Professor of Molecular Biology; Dr. Vincent Tagliabracci, Assistant Professor of Molecular Biology and Michael L. Rosenberg Scholar in Medical Research; Dr. Yang Xie, Associate Professor of Clinical Sciences; Dr. Zhijian Chen, Professor of Molecular Biology and the Center for the Genetics of Host Defense, Howard Hughes Medical Institute Investigator, who holds the George L. MacGregor Distinguished Chair in Biomedical Science.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

Russell Rian | EurekAlert!

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>