Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chips are down as Manchester makes protein scanning breakthrough

25.08.2008
Scientists at The University of Manchester have developed a new and fast method for making biological ‘chips’ – technology that could lead to quick testing for serious diseases, fast detection of MRSA infections and rapid discovery of new drugs.

Researchers working at the Manchester Interdisciplinary Biocentre (MIB) and The School of Chemistry have unveiled a new technique for producing functional ‘protein chips’ in a paper in the Journal of the American Chemical Society (JACS), published online today (22 August 2008).

Protein chips – or ‘protein arrays’ as they are more commonly known – are objects such as slides that have proteins attached to them and allow important scientific data about the behaviour of proteins to be gathered.

Functional protein arrays could give scientists the ability to run tests on tens of thousands of different proteins simultaneously, observing how they interact with cells, other proteins, DNA and drugs.

As proteins can be placed and located precisely on a ‘chip’, it would be possible to scan large numbers of them at the same time but then isolate the data relating to individual proteins.

These chips would allow large amounts of data to be generated with the minimum use of materials – especially rare proteins that are only available in very small amounts.

The Manchester team of Dr Lu Shin Wong, Dr Jenny Thirlway and Prof Jason Micklefield say the technical challenges of attaching proteins in a reliable way have previously held back the widespread application and development of protein chips.

Existing techniques for attaching proteins often results in them becoming fixed in random orientations, which can cause them to become damaged and inactive.

Current methods also require proteins to be purified first – and this means that creating large and powerful protein arrays would be hugely costly in terms of time, manpower and money.

Now researchers at The University of Manchester say they have found a reliable new way of attaching active proteins to a chip.

Biological chemists have engineered modified proteins with a special tag, which makes the protein attach to a surface in a highly specified way and ensures it remains functional.

The attachment occurs in a single step in just a few hours – unlike with existing techniques – and requires no prior chemical modification of the protein of interest or additional chemical steps.

Prof Jason Micklefield from the School of Chemistry, said: “DNA chips have revolutionised biological and medical science. For many years scientists have tried to develop similar protein chips but technical difficulties associated with attaching large numbers of proteins to surfaces have prevented their widespread application.

“The method we have developed could have profound applications in the diagnosis of disease, screening of new drugs and in the detection of bacteria, pollutants, toxins and other molecules.”

Researchers from The University of Manchester are currently working as part of a consortium of several universities on a £3.1 million project which is aiming to develop so-called ‘nanoarrays’.

These would be much smaller than existing ‘micro arrays’ and would allow thousands more protein samples to be placed on a single ‘chip’, reducing cost and vastly increasing the volume of data that could be simultaneously collected.

This project, which involves the universities of Manchester, Sheffield, Nottingham and Glasgow, is being supported by Research Councils UK (RCUK), the umbrella body for academic research funding in the UK.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>