Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children and adolescents with ADHD - Brain injuries are less frequent when taking medication

17.03.2015

Children and adolescents suffering from attention deficit hyperactivity disorder (ADHD) have a lower risk of traumatic brain injury when taking methylphenidate or atomoxetine. This was shown in a longitudinal study of ADHD in children and adolescents in Germany performed by the Leibniz Institute for Prevention Research and Epidemiology - BIPS and funded by the German Federal Ministry of Education and Research. Results of the project have now been published in the American journal JAMA Pediatrics.

It is well known that people with ADHD suffer more often from accidental injuries such as fractures, head injuries, burns, and poisoning. However, until now, there was no clear evidence that therapy with methylphenidate or atomoxetine could reduce the increased risk of injury.

Scientists from the Leibniz Institute for Prevention Research and Epidemiology - BIPS and the Helmholtz Centre for Infection Research investigated this question in their study of children and adolescents with ADHD.

The study was based on the German Pharmacoepidemiological research database (GePaRD) with data from about 17 million insured persons from four statutory health insurance providers in Germany. The researchers identified 37,650 children and adolescents between the ages of three and 17 years newly diagnosed with ADHD in 2005 and 2006.

In this group, which was followed until 2009, 2,128 children and adolescents were hospitalized for injuries, including 821 with a diagnosis of traumatic brain injury.

For the 2,128 children and adolescents treated with an injury in hospital, the researchers recorded all prescriptions of methylphenidate and atomoxetine. It was found that just over half of them received a prescription of methylphenidate or atomoxetine during the observation period; 92 percent of the prescriptions were for methylphenidate. The researchers then compared the general risk of an injury or a traumatic brain injury under drug treatment during the observation period to the risk without treatment.

It was found that during drug treatment the probability of being admitted to hospital for traumatic brain injury was lower by 34 percent. However, if all injuries resulting in hospitalization were considered, the risk reduction did not reach statistical significance.

Prof. Dr. Edeltraut Garbe, head of the Department of Clinical Epidemiology at BIPS, explains: "Our study results indicate that children and adolescents with ADHD have a lower risk of traumatic brain injury if they are treated with methylphenidate or atomoxetine. Whether this is true for accidental injuries in general must be investigated further - our study suggests, but could not prove, this."

Publication:
Mikolajczyk R, Horn J, Schmedt N, Langner I, Lindemann C, Garbe E. Accident prevention by medication among children with attention deficit/hyperactivity disorder (ADHD) - A case-only study. JAMA Pediatrics. 2015; http://dx.doi.org/10.1001/jamapediatrics.2014.3275

Contact:
Leibniz Institute for Prevention Research and Epidemiology - BIPS
Department of Clinical Epidemiology
Prof. Dr. Edeltraut Garbe
Phone +49/(0)421/218-56862
Email garbe@bips.uni-bremen.de

Niklas Schmedt
Phone +49/(0)421/218-56868
Email schmedt@bips.uni-bremen.de

Press office BIPS
Anja Wirsing
Phone +49/(0)421/218-56780
Email presse@bips.uni-bremen.de

Weitere Informationen:

http://dx.doi.org/10.1001/jamapediatrics.2014.3275

Anja Wirsing | idw - Informationsdienst Wissenschaft
Further information:
https://www.bips-institut.de

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>