Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical tag marks future microRNAs for processing, study shows

25.03.2015

New research reveals how cells identify precursors to gene-regulating microRNA molecules

Just as two DNA strands naturally arrange themselves into a helix, DNA's molecular cousin RNA can form hairpin-like loops. But unlike DNA, which has a single job, RNA can play many parts -- including acting as a precursor for small molecules that block the activity of genes.


Scientists found the enzyme METTL3 (green) tags a particular sequence within RNA molecules destined to become gene-regulating microRNAs. While this happens within cells' nuclei (blue), METTL3 is also found outside the nucleus in cells' cytoplasm, as shown above.

Credit: Laboratory of Systems Cancer Biology at The Rockefeller University

These small RNA molecules must be trimmed from long hairpin-loop structures, raising a question: How do cells know which RNA loops need to be processed this way and which don't?

New research at Rockefeller University, published March 18 in Nature, reveals how cells sort out the loops meant to encode small RNAs, known as microRNAs, by tagging them with a chemical group. Because microRNAs help control processes throughout the body, this discovery has wide-ranging implications for development, health and disease, including cancer, the entry point for this research.

"Work in our lab and elsewhere has shown changes in levels of microRNAs in a number of cancers. To better understand how and why this happens, we needed to first answer a more basic question and take a closer look at how cells normally identify and process microRNAs," says study author Sohail Tavazoie, Leon Hess Associate Professor, Senior Attending Physician and head of the Elizabeth and Vincent Meyer Laboratory of Systems Cancer Biology.

"Claudio Alarcón, a research associate in my lab, has discovered that cells can increase or decrease microRNAs by using a specific chemical tag."

Long known as the intermediary between DNA and proteins, RNA has turned out to be a versatile molecule. Scientists have discovered a number of RNA molecules, including microRNAs that regulate gene expression. MicroRNAs are encoded into the genome as DNA, then transcribed into hairpin loop RNA molecules, known as primary microRNAs. These loops are then clipped to generate microRNA precursors.

To figure out how cells know which hairpin loops to start trimming, Alarcón set out to look for modifications cells might make to the RNA molecules that are destined to become microRNAs. Using bioinformatics software, he scanned for unusual patterns in the unprocessed RNA sequences. The sequence GGAC, code for the bases guanine-guanine-adenine-cytosine, stood out because it appeared with surprising frequency in the unprocessed primary microRNAs. GGAC, in turn, led the researchers to an enzyme known as METTL3, which tags the GGAC segments with a chemical marker, a methyl group, at a particular spot on the adenine.

"Once we arrived at METTL3, everything made sense. The methyl in adenosines (m6A tag) is the most common known RNA modification. METTL3 is known to contribute to stabilizing and processing messenger RNA, which is transcribed from DNA, but it is suspected of doing much more," Alarcón says. "Now, we have evidence for a third role: the processing of primary microRNAs."

In series of experiments, the researchers confirmed the importance of methyl tagging, finding high levels of it near all types of unprocessed microRNAs, suggesting it is a generic mark associated with these molecules. When they reduced expression of METTL3, unprocessed primary microRNAs accumulated, indicating that the enzyme's tagging action was important to the process. And, working in cell culture and in biochemical systems, they found primary microRNAs were processed much more efficiently in the presence of the methyl tags than without them.

"Cells can remove these tags, as well as add them, so these experiments have identified a switch that can be used to ramp up or tamp down microRNA levels, and as a result, alter gene expression," Tavazoie says. "Not only do we see abnormalities in microRNAs in cancer, levels of METTL3 can be altered as well, which suggests this pathway is could govern cancer progression."

Wynne Parry | EurekAlert!

More articles from Life Sciences:

nachricht Biophysicists reveal how optogenetic tool works
29.05.2020 | Moscow Institute of Physics and Technology

nachricht Mapping immune cells in brain tumors
29.05.2020 | University of Zurich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>