Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channeling into cell control

23.01.2012
A new model of intracellular signaling via calcium ions will assist in understanding the effects of calcium fluctuations

A research team from the RIKEN Brain Science Institute in Wako has visualized and accurately modeled the molecular changes that open and close the internal membrane channels for calcium ions within cells1. The ions moving through these channels act as intracellular messengers, relaying information that regulates the activity of the proteins that control many critical processes of life and death—from fertilization through to development, metabolism and, ultimately, death.


Figure 1: A cell emitting fluorescent signals as a result of attaching specialized proteins to two of its channel-forming IP3Rs (scale bar, 10 µm). Copyright : PNAS

Previous work by the team showed that inositol trisphosphate (IP3) and calcium ions are involved in regulating channel opening and closing. The channels are formed from complexes of four IP3 receptors (IP3R) that bind IP3 and calcium. At low concentrations of calcium ions, channel opening is stimulated; but at higher levels, it is inhibited. Although cell biologists have proposed models depicting this process, they had failed to collect any definitive evidence supporting a particular the mechanism, until now.

In live cells, Takayuki Michikawa, Katsuhiko Mikoshiba and their colleagues attached fluorescent proteins to two of the channel-forming IP3Rs because these receptors change shape in response to the binding of IP3 and calcium, and energy flows between this pair of proteins in a process known as Förster resonance energy transfer (FRET) (Fig. 1). In a detectable way, FRET changes the fluorescent light emitted, so the impact of such links on the conformation of the channel can be studied.

The researchers found there were at least five binding sites on each IP3R, one for IP3 and at least four for calcium. Binding IP3 tended to bring the receptors forming the channel closer together, while calcium tended to make them relax. But the effects of combining the two were not simply additive. At a constant level of IP3, they observed an optimum concentration of calcium that had the most impact on opening the channel.

From these results, the researchers proposed a model whereby IP3 and calcium ions compete with one another—the binding of IP3 prevents calcium linking to certain sites, and vice versa. High concentrations of calcium prevent IP3 from binding at all. Further, the researchers proposed two different types of calcium binding sites: low-affinity sites responsible for channel activation, and high-affinity sites for inactivation.

“During the past five years, we have succeeded in visualizing IP3 dynamics and calcium pump activity,” Michikawa and Mikoshiba say. “In combination with the model for the calcium release channel described in this study, we are now ready to understand what happens in living cells during calcium ion oscillations.”

The corresponding author for this highlight is based at the Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Superresolution live-cell imaging provides unexpected insights into the dynamic structure of mitochondria
18.02.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Blood and sweat: Wearable medical sensors will get major sensitivity boost
18.02.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>