Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chains of nanogold – forged with atomic precision

23.09.2016

Researchers at Nanoscience Center of University of Jyväskylä in Finland have succeeded in producing short chains and rings of gold nanoparticles with unprecedented precision. They used a special kind of nanoparticles with a well-defined structure and linked them together with molecular bridges. These structures – being practically huge molecules – allow extremely accurate studies of light–matter interaction in metallic nanostructures and plasmonics. This research was funded by The Academy of Finland.

Nanotechnology gives us tools to fabricate nanometer sized particles where only a few hundred metal atoms form their core. New interesting properties emerge in this scale, for example, the light–matter interaction is extremely strong and catalytic activity increased. These properties have led to several applications, such as, chemical sensors and catalysts.


“Synthesis of nanoparticles usually yields a variety of sizes and shapes”, say lecturer Dr Tanja Lahtinen. The approach we use is exceptional in the sense that after purification we get only a single type of a nanoparticle. These nanoparticles have a specified number of each atom and the atoms are organized as a well-defined structure. It is essentially a single huge molecule with a core of gold. These nanoparticles were linked with molecular bridges forming pairs, chains, and rings of nanoparticles.

“When these kind of nanostructures interact with light, electron clouds of the neighboring metal cores become coupled”, explains researcher Dr Eero Hulkko. The coupling alters significantly the electric field what molecules in between the particles feel.

“Studying nanostructures that are well-defined at the atomic level allows us to combine experimental and computational methods in a seemless way”, continues Dr Lauri Lehtovaara, Research Fellow of the Finnish Academy. We are aiming to understand light–matter interaction in linked metallic nanostructures at the quantum level. Deeper understanding is essential for development of novel plasmonic applications.

The research continues a long-term multidispilinary collaboration at Nanoscience Center of University of Jyväskylä.

“I am very happy that our dedicated efforts on studying monolayer protected clusters and their applications have created an unique multidisiplinary center of excellence which is able to continuously publish high impact science”, says Hannu Häkkinen, an Academy Professor and head of the Nanoscience Center.

In addition to the above persons, Karolina Sokołowska, Dr Tiia-Riikka Tero, Ville Saarnio, Dr Johan Lindgren, and Prof Mika Pettersson contributed to the research. The research was published in the Nanoscale on xx.9.2016. Computational resources were supplied by CSC - IT Center for Science.

http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr05267c#!divAbstract

  • Full bibliographic informationTanja Lahtinen, Eero Hulkko, Karolina Sokołowska, Tiia-Riikka Tero, Ville Saarnio, Johan Lindgren, Mika Pettersson, Hannu Häkkinen and Lauri Lehtovaar,a, “Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n” Nanoscale X x.x.2016, DOI: 10.1039/c6nr05267c

For further information, please contact:

Aila Pirinen+358295335092

aila.pirinen@aka.fi

Aila Pirinen | AlphaGalileo

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>