Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cerebellum as navigation assistant: A cognitive map enables orientation

03.11.2011
The cerebellum as navigation assistant
A cognitive map enables orientation

The cerebellum is far more intensively involved in helping us navigate than previously thought. To move and learn effectively in spatial environments our brain, and particularly our hippocampus, creates a "cognitive" map of the environment. The cerebellum contributes to the creation of this map through altering the chemical communication between its neurones.

If this ability is inactivated, the brain is no longer able to to create an effective spatial representation and thus navigation in an environment becomes impaired. The details of these observations were recently published in "Science" by the Ruhr University neuroscientist, Marion André who is a student of the International Graduate School of Neuroscience( IGSN), along with her colleagues in France.

A cognitive map in the hippocampus

In order to navigate efficiently in an environment, we need to create and maintain a reliable internal representation of the external world. A key region enabling such representation is the hippocampus which contains specialized pyramidal neurons named place cells. Each place cell is activated at specific location of the environment and gives dynamic information about self-location relative to the external world. These neurons thus generate a cognitive map in the hippocampal system through the integration of multi sensory inputs combining external information (such as visual, auditory, olfactory and tactile cues) and inputs generated by self-motion (i.e. optic flow, proprioceptive and vestibular information).

Decisive: synaptic plasticity

Our ability to navigate also relies on the potential to use this cognitive map to form an optimal trajectory toward a goal. The cerebellum, a foliate region based at the back of the brain, has been recently shown to participate in the formation of the optimal trajectory. This structure contains neurons that are able to increase or decrease their chemical communication, a mechanism called synaptic plasticity. A decrease in the synaptic transmission of the cerebellar neurons, named long-term depression (LTD) participates in the optimization of the path toward a goal.

No orientation without LTD

Using transgenic mice that had a mutation impairing exclusively LTD of the cerebellar neurons, the neuroscientists were able to show that the cerebellum participates also in the formation of the hippocampal cognitive map. Indeed mice lacking this form of cerebellar plasticity were unable to build a reliable cognitive representation of the environment when they had to use self-motion information. Consequently, they were unable to navigate efficiently towards a goal in the absence of external information (for instance in the dark). This work highlights for the first time an unsuspected function of the cerebellum in shaping the representation of our body in space.

Bibliographic record

Christelle Rochefort, Arnaud Arabo, Marion André, Bruno Poucet, Etienne Save, and Laure Rondi-Reig: Cerebellum Shapes Hippocampal Spatial Code. Science, 21 October 2011: 385-389. DOI:10.1126/science.1207403

Internet: http://www.sciencemag.org/content/334/6054/385.full?sid=4b397dcb-4e01-4fbb-9168-...

Further Information

Dr. Marion André, Abteilung für Neurophysiologie, Medizinsche Fakultät der RUB und International Graduate School of Neuroscience (IGSN) der RUB, Tel. +49 234 32 22042

Prof. Dr. Denise Manahan-Vaughan, Leiterin des Lehrstuhls für Neurophysiologie und Direktorin/Studiendekanin der IGSN, Tel. +49 234 32 22042, denise.manahan-vaughan@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/igsn/index.shtml

More articles from Life Sciences:

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

nachricht Uncovering hidden protein structures
18.06.2019 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Uncovering hidden protein structures

18.06.2019 | Life Sciences

Monitoring biodiversity with sound: how machines can enrich our knowledge

18.06.2019 | Life Sciences

Schizophrenia: Adolescence is the game-changer

18.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>