Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular insights via barcoded yeast genes

22.06.2009
A newly created yeast gene archive will enable efficient analysis of the function of bioactive compounds with potential pharmaceutical use

By establishing a library of individual yeast genes, each cleverly tagged with its own molecular barcode, an international team of molecular geneticists has designed a valuable resource for pharmaceutical research with advantages over previous approaches.

The research team, including Minoru Yoshida at the RIKEN Advanced Science Institute in Wako, and Charles Boone at the University of Toronto, Canada, developed the library in which each yeast gene is copied and attached to two unique single stranded DNA molecules that act as barcodes. This enables researchers to efficiently identify each gene.

The yeast-based chemical-genomics approach, presented recently in Nature Biotechnology by Yoshida and colleagues (1), is useful because many medicinally important drugs target fundamental biological processes that are conserved between yeast cells and higher organisms.

Using the team’s approach, all the gene-carrying units, or plasmids, in the yeast are carefully constructed individually, as opposed to conventional genomic libraries that are created from random fragments of DNA. Each plasmid carries a single yeast gene as well as two 20-nucleotide barcodes that identify it. The library comprises plasmids for almost 5,000 genes and covers approximately 90% of the yeast genome.

Other approaches to examine the genetic influence of potential drugs have limitations such as needing high volumes of test compound, which can be of limited availability, or being labor intensive.

Most significantly, the newly created gene catalogue will enable researchers to identify at the genetic level the precise modes of action of specific compounds that are being screened as potential pharmaceuticals. The library can be used to efficiently identify mutant genes that confer resistance to a test drug by comparing cells that show resistance and susceptibility to the compound. Determination of the mutant genes leads to the identification of the functional impact of a potential drug.

In a demonstration of the usefulness of the library, Yoshida and colleagues identified the gene responsible for conferring resistance to a novel class of compounds with pharmaceutical potential. Identifying this gene enabled the team to characterize the mechanism of action of these molecules and to determine that they are antifungal compounds, a property not detected by other techniques.

An essential but challenging step in the development of small molecules into therapeutic drugs is identification of their cellular target. “Using this library, our group intends systematically to study chemical–genetic interactions in which an altered gene dosage or gene mutation leads to a change in cellular response to a bioactive compound,” says Yoshida.

Ho, C.H., Magtanong, L., Barker, S.L., Gresham, D., Nishimura, S., Natarajan, P., Koh, J.L.Y., Porter, J., Gray, C.A., Andersen, R.J. et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nature Biotechnology 27, 369–377 (2009).

The corresponding author for this highlight is based at the RIKEN Chemical Biology Department, Chemical Genomics Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/725/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Scientists discover new 'architecture' in corn
21.01.2019 | Louisiana State University

nachricht Nuclear actin filaments determine T helper cell function
21.01.2019 | Universitätsklinikum Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>