Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular insights via barcoded yeast genes

22.06.2009
A newly created yeast gene archive will enable efficient analysis of the function of bioactive compounds with potential pharmaceutical use

By establishing a library of individual yeast genes, each cleverly tagged with its own molecular barcode, an international team of molecular geneticists has designed a valuable resource for pharmaceutical research with advantages over previous approaches.

The research team, including Minoru Yoshida at the RIKEN Advanced Science Institute in Wako, and Charles Boone at the University of Toronto, Canada, developed the library in which each yeast gene is copied and attached to two unique single stranded DNA molecules that act as barcodes. This enables researchers to efficiently identify each gene.

The yeast-based chemical-genomics approach, presented recently in Nature Biotechnology by Yoshida and colleagues (1), is useful because many medicinally important drugs target fundamental biological processes that are conserved between yeast cells and higher organisms.

Using the team’s approach, all the gene-carrying units, or plasmids, in the yeast are carefully constructed individually, as opposed to conventional genomic libraries that are created from random fragments of DNA. Each plasmid carries a single yeast gene as well as two 20-nucleotide barcodes that identify it. The library comprises plasmids for almost 5,000 genes and covers approximately 90% of the yeast genome.

Other approaches to examine the genetic influence of potential drugs have limitations such as needing high volumes of test compound, which can be of limited availability, or being labor intensive.

Most significantly, the newly created gene catalogue will enable researchers to identify at the genetic level the precise modes of action of specific compounds that are being screened as potential pharmaceuticals. The library can be used to efficiently identify mutant genes that confer resistance to a test drug by comparing cells that show resistance and susceptibility to the compound. Determination of the mutant genes leads to the identification of the functional impact of a potential drug.

In a demonstration of the usefulness of the library, Yoshida and colleagues identified the gene responsible for conferring resistance to a novel class of compounds with pharmaceutical potential. Identifying this gene enabled the team to characterize the mechanism of action of these molecules and to determine that they are antifungal compounds, a property not detected by other techniques.

An essential but challenging step in the development of small molecules into therapeutic drugs is identification of their cellular target. “Using this library, our group intends systematically to study chemical–genetic interactions in which an altered gene dosage or gene mutation leads to a change in cellular response to a bioactive compound,” says Yoshida.

Ho, C.H., Magtanong, L., Barker, S.L., Gresham, D., Nishimura, S., Natarajan, P., Koh, J.L.Y., Porter, J., Gray, C.A., Andersen, R.J. et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nature Biotechnology 27, 369–377 (2009).

The corresponding author for this highlight is based at the RIKEN Chemical Biology Department, Chemical Genomics Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/725/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>