Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells bulge to squeeze through barriers

28.11.2017

New tool in cell's invasion machinery may help explain cancer's ability to spread

Invasive cells deploy a trick to break through tissues and spread to other parts of the body, researchers report.


This time-lapse video of an invading cell in the lab worm C. elegans shows a fleeting protrusion that may help explain how cancer spreads.

Video by Kaleb Naegeli, Duke University

In a new study, 3-D time-lapse imaging of cellular "break-ins" in the transparent worm C. elegans reveals a fleeting, yet key structure in action. A single protrusion bulges out from the cell surface, wedges a hole through the protective layer that separates the cell from other tissues, and swells until the breach is wide enough for the entire cell to squeeze through.

These findings could point to new ways to prevent metastasis, the spread of cancer cells which typically makes the disease more deadly and difficult to treat. The work appeared Nov. 20 in the journal Developmental Cell.

Most cells in the body stay put. But from time to time, cells trespass into other tissues, said lead author David Sherwood, a biology professor at Duke University.

The ability of cells to break and enter is critical for many normal processes, such as when the placenta attaches to the uterus during early pregnancy, or when immune cells push their way through blood vessel walls to get to sites of injury or infection.

Cell invasion is hijacked during metastasis, when cancer cells leave their original tumor sites and spread to other parts of the body.

To spread, a cell must first penetrate a sheet-like mesh of proteins and other molecules called the basement membrane, which supports and surrounds tissues like a Kevlar wrapper.

One of the first steps in this breakthrough process was recognized 30 years ago, Sherwood said. The basement membrane is too dense to slip through, so invading cells begin by pushing out tiny "feet" many times finer than a human hair, called invadopodia. These piston-like projections pop out of the cell surface every few seconds and then retract, until one punches a tiny hole in the basement membrane. What happens after the initial breach, however, was less clear.

In the new study, researchers identify a second structure that takes over after invadopodia make the first puncture.

Sherwood's group used a camera attached to a powerful microscope to take pictures of invading worm cells every five minutes for up to three hours.

They tracked a specialized cell called the anchor cell, which breaks through the basement membrane that separates the worm's uterus from its vulva to connect them so the worm can lay eggs.

Sherwood and colleagues discovered that the C. elegans anchor cell accomplishes this task with the help of a single large protrusion that wedges into the tiny hole created by the invadopodia, like a foot in the door. As the protrusion enlarges, it shoves the basement membrane aside and expands the existing hole.

Rather than stretching like a balloon, the researchers found, the protrusion inflates by adding to the cell membrane from within. Tiny sacs inside the cell called lysosomes concentrate at the breach site. Once there, they fuse with the cell's outer membrane, increasing its surface area. As the protrusion swells, a protein called dystroglycan clusters at its base to keep the bulge from deflating.

The pushing forces "clear a path for invasion similar to the way a balloon catheter inflates to open an artery," Sherwood said. Within a half hour it contracts, leaving behind a hole wide enough for the cell to move through.

To make the protrusion, the study shows, the cell relies on a chemical cue called netrin and its receptor to direct lysosomes to the site. High netrin levels have been linked to metastasis in numerous human cancers, which suggests the mechanism the researchers found is a common feature of invasive cells, Sherwood said.

The findings might also explain why drugs designed to block the spread of cancer by targeting invading cells have failed.

Several proposed treatments work by inhibiting enzymes called metalloproteinases that dissolve the basement membrane. The reason such therapies have had limited success in clinical trials, Sherwood said, may be because they ignore a pivotal player in cancer progression -- these inflatable protrusions that bulge out from the tumor cell and push the basement membrane aside.

Figuring out how to block the netrin pathway and prevent cancer cells from putting out new protrusions might deprive them of a critical tool they use to spread, Sherwood said.

"Migrating cells have a remarkable repertoire of invasion tactics," Sherwood said. "This study reveals another trick up their sleeve."

###

This research was supported by the American Cancer Society (129351-PF-16-024-01-CSM), the National Institutes of Health (GM121015-01, F32 GM115151) and the National Institute of General Medical Sciences (R01 GM083071, R01 GM079320, R35 MIRA GM118049).

CITATION: "Cell Invasion in Vivo Via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain," Kaleb Naegeli, Eric Hastie, Aastha Garde, Zheng Wang, Daniel Keeley, Kacy Gordon, Ariel Pani, Laura Kelley, Meghan Morrisey, Qiuyi Chi, Bob Goldstein and David Sherwood. Developmental Cell, Nov. 20, 2017. https://doi.org/10.1016/j.devcel.2017.10.024.

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Ann Smith | EurekAlert!

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>