Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells bulge to squeeze through barriers

28.11.2017

New tool in cell's invasion machinery may help explain cancer's ability to spread

Invasive cells deploy a trick to break through tissues and spread to other parts of the body, researchers report.


This time-lapse video of an invading cell in the lab worm C. elegans shows a fleeting protrusion that may help explain how cancer spreads.

Video by Kaleb Naegeli, Duke University

In a new study, 3-D time-lapse imaging of cellular "break-ins" in the transparent worm C. elegans reveals a fleeting, yet key structure in action. A single protrusion bulges out from the cell surface, wedges a hole through the protective layer that separates the cell from other tissues, and swells until the breach is wide enough for the entire cell to squeeze through.

These findings could point to new ways to prevent metastasis, the spread of cancer cells which typically makes the disease more deadly and difficult to treat. The work appeared Nov. 20 in the journal Developmental Cell.

Most cells in the body stay put. But from time to time, cells trespass into other tissues, said lead author David Sherwood, a biology professor at Duke University.

The ability of cells to break and enter is critical for many normal processes, such as when the placenta attaches to the uterus during early pregnancy, or when immune cells push their way through blood vessel walls to get to sites of injury or infection.

Cell invasion is hijacked during metastasis, when cancer cells leave their original tumor sites and spread to other parts of the body.

To spread, a cell must first penetrate a sheet-like mesh of proteins and other molecules called the basement membrane, which supports and surrounds tissues like a Kevlar wrapper.

One of the first steps in this breakthrough process was recognized 30 years ago, Sherwood said. The basement membrane is too dense to slip through, so invading cells begin by pushing out tiny "feet" many times finer than a human hair, called invadopodia. These piston-like projections pop out of the cell surface every few seconds and then retract, until one punches a tiny hole in the basement membrane. What happens after the initial breach, however, was less clear.

In the new study, researchers identify a second structure that takes over after invadopodia make the first puncture.

Sherwood's group used a camera attached to a powerful microscope to take pictures of invading worm cells every five minutes for up to three hours.

They tracked a specialized cell called the anchor cell, which breaks through the basement membrane that separates the worm's uterus from its vulva to connect them so the worm can lay eggs.

Sherwood and colleagues discovered that the C. elegans anchor cell accomplishes this task with the help of a single large protrusion that wedges into the tiny hole created by the invadopodia, like a foot in the door. As the protrusion enlarges, it shoves the basement membrane aside and expands the existing hole.

Rather than stretching like a balloon, the researchers found, the protrusion inflates by adding to the cell membrane from within. Tiny sacs inside the cell called lysosomes concentrate at the breach site. Once there, they fuse with the cell's outer membrane, increasing its surface area. As the protrusion swells, a protein called dystroglycan clusters at its base to keep the bulge from deflating.

The pushing forces "clear a path for invasion similar to the way a balloon catheter inflates to open an artery," Sherwood said. Within a half hour it contracts, leaving behind a hole wide enough for the cell to move through.

To make the protrusion, the study shows, the cell relies on a chemical cue called netrin and its receptor to direct lysosomes to the site. High netrin levels have been linked to metastasis in numerous human cancers, which suggests the mechanism the researchers found is a common feature of invasive cells, Sherwood said.

The findings might also explain why drugs designed to block the spread of cancer by targeting invading cells have failed.

Several proposed treatments work by inhibiting enzymes called metalloproteinases that dissolve the basement membrane. The reason such therapies have had limited success in clinical trials, Sherwood said, may be because they ignore a pivotal player in cancer progression -- these inflatable protrusions that bulge out from the tumor cell and push the basement membrane aside.

Figuring out how to block the netrin pathway and prevent cancer cells from putting out new protrusions might deprive them of a critical tool they use to spread, Sherwood said.

"Migrating cells have a remarkable repertoire of invasion tactics," Sherwood said. "This study reveals another trick up their sleeve."

###

This research was supported by the American Cancer Society (129351-PF-16-024-01-CSM), the National Institutes of Health (GM121015-01, F32 GM115151) and the National Institute of General Medical Sciences (R01 GM083071, R01 GM079320, R35 MIRA GM118049).

CITATION: "Cell Invasion in Vivo Via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain," Kaleb Naegeli, Eric Hastie, Aastha Garde, Zheng Wang, Daniel Keeley, Kacy Gordon, Ariel Pani, Laura Kelley, Meghan Morrisey, Qiuyi Chi, Bob Goldstein and David Sherwood. Developmental Cell, Nov. 20, 2017. https://doi.org/10.1016/j.devcel.2017.10.024.

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu 

Robin Ann Smith | EurekAlert!

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>