Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calcium Connections: Penn Researchers Discover Basic Pathway for Maintaining Cell’s Fuel Stores

28.07.2010
Defining of Novel Mechanism Informs Understanding of Cancer, Aging Physiology

University of Pennsylvania School of Medicine researchers have described a previously unknown biological mechanism in cells that prevents them from cannibalizing themselves for fuel. The mechanism involves the fuel used by cells under normal conditions and relies on an ongoing transfer of calcium between two cell components via an ion channel. Without this transfer, cells start consuming themselves as a way of to get enough energy.

“Altered metabolism is a feature of many diseases, as well as aging,” says senior author J. Kevin Foskett, PhD, professor of Physiology. “The definition of this essential mechanism for regulating cell energy will have implications for a wide variety of physiological processes and diseases.” The investigators describe their findings in the cover article in the most recent issue of Cell.

Most healthy cells in the body rely on a complicated process called oxidative phosphorylation to produce the fuel ATP. Knowledge about how ATP is produced by the cell’s mitochondria, the energy storehouse, is important for understanding normal cell metabolism, which will provide insights into abnormal cell metabolism, as in the case of cancer.

Foskett and colleagues discovered that a fundamental control system regulating ATP is an ongoing shuttling of calcium to the mitochondria from another cell component called the endoplasmic reticulum.

The endoplasmic reticulum is the major reservoir of calcium in cells. The stored calcium is released to adjacent mitochondria through a calcium ion channel called the IP3 receptor. The researchers found that this calcium release occurs at a low level all the time.

When the researchers interfered with the calcium release using genetic or pharmacological methods, the mitochondria were unable to produce enough ATP to meet the needs of the cell. This indicates that mitochondria rely on the ongoing calcium transfer to make enough ATP to support normal cell metabolism.

In the absence of this transfer, the mitochondria fail to make enough ATP, which triggers an extreme cell survival process called autophagy, or self eating.

“We discovered that this self consumption as a response to the lack of the calcium transfer appears to work in many types of cells, including hepatocytes from the liver, vascular smooth muscle cells, and various cultured cells lines,” says Foskett.

Autophagy is important for clearing aggregated proteins from cells, for example in neurodegenerative diseases, and it plays a role in cancer and hypertension. The IP3 receptor plays important roles in the regulation of programmed cell death, a process that is subverted in many cancers, and in neurodegenerative diseases, including Alzheimer's and Huntington's diseases. Calcium release from the IP3 receptor may be at the nexus of neurodegeneration, cancer and the role of cell metabolism gone awry in these broad disease classes.

This research was funded by the National Institute of General Medical Sciences, the National Heart, Lung, and Blood Institute, and the National Institute of Diabetes and Digestive and Kidney Diseases.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.

Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.

Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

Tiny Helpers that Clean Cells

14.08.2018 | Life Sciences

Algorithm provides early warning system for tracking groundwater contamination

14.08.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>