Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM researchers identify genes that influence hippocampal volume

16.04.2012
An international team of researchers led by Boston University School of Medicine (BUSM) has identified four loci that appear to be associated with decreasing the volume of the hippocampus.

The hippocampus is the region of the brain that plays an important role in the formation of specific, new memories, which is an ability that patients with Alzheimer's disease lose. The findings may have broad implications in determining how age, Alzheimer's disease and other diseases impact the function and integrity of the hippocampus.

Sudha Seshadri, MD, professor of neurology at BUSM, is a senior author of the study, which will be published online in Nature Genetics.

Previous research has shown that the hippocampus is one of the brain regions involved with short and long-term memory processes and that it shrinks with age. It also is one of the first regions to exhibit damage from Alzheimer's disease, which can cause memory problems and disorientation.

... more about:
»BUSM »Framingham »brain aging »risk factor

"One of the problems with studying the genetics of a disease like Alzheimer's, which becomes symptomatic later in life, is that many people die of other causes before they reach the age at which they might have manifested the clinical dementia associated with the disease," said Seshadri. "To get around this issue, we have been studying the genetics of traits that we know are associated with a high future risk of Alzheimer's disease but that can be measured in everyone, often 10 to 20 years before the age when most persons develop clinical symptoms."

The potential genetic traits are called endophenotypes, and hippocampal volume is one such trait. The hippocampus shrinks before and during the progression of Alzheimer's disease, but other factors, such as vascular risk factors and normal aging, also lead to the decrease in size.

"Our research team wanted to pinpoint the genetic causes of changes in the hippocampal volume in a sample of apparently normal older persons," said Seshadri.

The Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium allowed the researchers to gather data on hippocampal volume from 9,232 people who did not have dementia. They identified four genetic loci, including seven genes in or near these loci that appear to determine hippocampal volume.

The results show that if one of the genes is altered, the hippocampus is, on average, the same size as that of a person four to five years older. These results were replicated in two large European samples that included a mixed-age sample that included some participants with cognitive impairment.

"The findings indicate that these loci may have broad implications for determining the integrity of the hippocampus across a range of ages and cognitive capacities," said Seshadri. One of the genes identified by the researchers was also shown to play a role in memory performance in a different data sample.

The identified genetic associations indicate that certain genes could influence cell death by apoptosis, brain development and neuronal movement during brain development, and oxidative stress. Additionally, the researchers found that the genes play a role in ubiquitination, which is a process by which damaged proteins are removed, whereas other genes code for enzymes targeted by new diabetes medications.

"Future studies need to further explore these genetic regions in order to better understand the role of these genes in determining hippocampal volume," added Seshadri.

One of the largest cohorts involved in the study was the Framingham Heart Study cohort, affiliated with BUSM. Seshadri is a Senior Investigator at the Framingham Heart Study.

"Such important research would not be possible without the ongoing dedication of the Framingham study participants, which now span three generations and six decades," said Seshadri.

This study was funded primarily through the National Institute on Aging.

Jenny Eriksen | EurekAlert!
Further information:
http://www.bmc.org

Further reports about: BUSM Framingham brain aging risk factor

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>