Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bubonic Bottleneck: UNC Scientists Overturn Dogma on the Plague

16.02.2015

The current outbreak of the plague in Madagascar shines a light on the need for new approaches to treat the ancient pathogen. A new UNC study unexpectedly unravels a long-held theory on how a fleabite leads to infection.

For decades, scientists have thought the bacteria that cause the bubonic plague hijack host cells at the site of a fleabite and are then taken to the lymph nodes, where the bacteria multiply and trigger severe disease. But UNC School of Medicine researchers discovered that this accepted theory is off base. The bacteria do not use host cells; they traffic to lymph nodes on their own and not in great numbers.


National Institute of Allergies and Infectious Diseases

Yersinia Pestis, the bacteria that cause the plague

In fact, most of the plague-causing bacteria – called Yersinia pestis – get trapped in a bottleneck either in the skin, while en route to the lymph node, or in the node itself. Only a few microbes break free to infect the lymph node and cause disease.

“Anytime you find something where the host is winning, you want to exploit it,” said Virginia Miller, PhD, professor of microbiology and immunology and senior author of the paper in PLoS Pathogens. “If we can understand how the host and the bacteria contribute to this bottleneck, then this could become something we’d target so we could either ramp up what’s causing the bottleneck or slow down the infection.”

The discovery offers much needed information about how virulent insect-borne diseases, such as plague, malaria, and dengue virus cause infection. The findings also present new routes for research on how bacterial strains cause disease despite the immune system’s best efforts.

The plague, which killed millions of people during the Middle Ages, is contracted by several people each year in the western United States. Outbreaks have occurred in the recent past in India and Africa, and one is unfolding right now in Madagascar. Standard antibiotics are effective against Y. pestis if taken early enough. But infection can go undetected for days, making diagnosis difficult and antibiotics less effective the longer the bacteria take root.

There are three kinds of plague all caused by Y. pestis: bubonic, which is contracted through fleabite; pneumonic, which is contracted by breathing in the bacteria; and septicemic, which is a severe infection of blood.

Miller’s team studies the pneumonic and bubonic versions. Three years ago, Rodrigo Gonzalez, PhD – a UNC graduate student at the time and now a postdoctoral fellow at Harvard – searched the scientific literature for data confirming the accepted notion that Y. pestis gets trafficked by human phagocytic cells from the fleabite site to the lymph nodes. Scientists readily accepted this idea because when Y. pestis microbes are added to phagocytic cells in culture, the cells do soak up the bacteria.

Phagocytes essentially eat harmful microbes, and because these cells traffic through the lymphatic system, scientists came to the logical conclusion that phagocytes take the Y. pestis to the lymph nodes.

But Gonzales and Miller knew that a fleabite does not penetrate all layers of skin like an injection does. The bites of fleas and mosquitos are intradermal; they occur within the layers of skin. Gonzales and Miller agreed that testing this long-held theory was a worthy project.

Gonzales spent months developing an accurate way to mimic the flea bite in the lab so that the proper amount of bacteria would get transferred into the skin of mice. Then Miller’s team created 10 special DNA sequences and added them to the chromosome of Y. pestis to generate 10 different strains. This did not affect virulence of the bacteria but allowed Miller’s team to tag the microbes so that the researchers could identify which bacteria traveled from the “bite site” to the lymph nodes.

“We found that only one or two of the 10 bacteria made it to the lymph node,” Miller said. “But they got there fast – within five or ten minutes after the bacteria were introduced. We know that if a bacterium is traveling in a host cell, it would not move that fast because host cells are slow; they kind of crawl through the lymphatic system instead of flowing through fluid like bacteria can.”

Miller’s team is currently conducting experiments to figure out how most of the bacteria are prevented from infecting the lymph node.

“We may have found a point of vulnerability,” Miller said. “Exploiting it could lead to new ways to defeat Yersinia pestis and other insect-borne pathogens.”

The National Institutes of Health and the Robert D. Watkins Fellowship from American Society for Microbiology funded this research.

Contact Information
Mark Derewicz
Science Communications Manager
mark.derewicz@unch.unc.edu

Mark Derewicz | newswise
Further information:
http://www.med.unc.edu/

More articles from Life Sciences:

nachricht Chemists use light to build biologically active compounds
14.11.2019 | Westfälische Wilhelms-Universität Münster

nachricht Something old, something new in the Ocean`s Blue
14.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Theoretical tubulanes inspire ultrahard polymers

14.11.2019 | Materials Sciences

Can 'smart toilets' be the next health data wellspring?

14.11.2019 | Health and Medicine

New spin directions in pyrite an encouraging sign for future spintronics

14.11.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>