Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brothers in arms

19.03.2009
Researchers from Helmholtz-Centre in Braunschweig and immunologists from Magdeburg investigate the connection of flu and pneumonia

A joint venture from researchers from the Helmholtz-Centre for Infection Research (HZI) in Braunschweig, the Otto-von-Guericke-University in Magdeburg, and the Karolinska institute in Sweden have taken an in-depth look at the connection between flu infection and pneumonia. Their results, recently released in the scientific journal "PLoS One", have disproven a common theory about flu-like pneumonia.

Some viral infections trigger a decrease of immune cells in the blood – a so-called "lymphopenia". The reasons behind it and whether this is the case with influenza are unknown. To investigate the latter, HZI researchers infected mice with flu viruses and measured the amount of immune cells in the animal's blood every day. Some days later, flu-infected mice received a dosage of pneumonia bacteria usually harmless for healthy mice. While the flu-infected mice did develop a superinfection & subsequently died, surprisingly, they were not suffering from lymphopenia. The healthy, non-flu-infected mice defeated the bacteria successfully and recovered.

To discover whether a lack of immune cells encourages an infection with pneumonia bacteria in general, an artificial drug-induced lymphopenia was established in the mice. Without infecting these lymphopenic mice with flu viruses, they received pneumonia bacteria. Despite a severe lack of immune cells, the mice recovered completely.

With these results, the researchers could show that influenza facilitates and intensifies an infection from pneumonia bacteria, while disproving the common idea that this is caused by a lack of immune cells. "This result was an enormous surprise for us because it directly contradicts widespread assumptions", says Sabine Stegemann, researcher in the groups "Immune regulation" at the HZI and "Molecular Immunology" at the Otto-von-Guericke-University in Magdeburg.

"Now we want to understand the reasons for the increased susceptibility", says Matthias Gunzer, head of the group in Magdeburg. "It could be interplay of weakened mucous membranes and scavenger cells that induce ideal conditions for pneumonia bacteria to create a deadly lung infection. Another reason may be a reaction of the host immune system: It disables hyperactive flu-fighting immune cells to inhibit destruction of healthy lung tissue. "The immune system keeps itself under control and that makes it easy for pneumonia bacteria to infect the lung", says Gunzer.

Article: Stegemann S, Dahlberg S, Kröger A, Gereke M, Bruder D, et al. 2009 Increased Susceptibility for Superinfection with Streptococcus pneumoniae during Influenza Virus Infection Is Not Caused by TLR7-Mediated Lymphopenia. PLoS ONE 4(3): e4840. doi:10.1371/journal.pone.0004840

Dr. Bastian Dornbach | Helmholtz Association
Further information:
http://www.helmholtz-hzi.de

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>