Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking BubR1 mimics genetic shuffle seen in cancer cells

18.11.2008
Offers opportunity to 'force cancer's hand,' say Fox Chase researchers

A study of how one protein enzyme, BubR1, helps make sure chromosomes are equally distributed during mitosis might explain how the process of cell division goes so awry in cancer, according to researchers from Fox Chase Cancer Center. Their findings might offer a better understanding of the processes behind cancer-cell survival and drug-resistance.

In an article published online today in the Journal of Cell Biology, the Fox Chase researchers demonstrate that the BubR1 protein contains four separate functional areas that take part in cell division. Mutations in these areas, the researchers say, lead to a genetic rearrangement similar to a process that allows cancer cells to evade destruction by medical treatment. Inhibiting BubR1 could be a strategy that enhances the killing power of current therapeutics, co-author Tim J. Yen, Ph.D., believes.

"Improper chromosomal segregation is a hallmark of cancer – it scrambles chromosomes and shuffles the genetic deck in a way that helps some cancer cells to evade destruction," says Yen, a senior member of the Fox Chase scientific staff. "This shuffling can, in effect, push a cancer cell to evolve in a way that allows it to survive drug or radiation therapy."

According to Yen, cancer cells survive by playing a risky evolutionary gamble. Improper chromosomal segregation allows cancer cells to shuffle their genetic deck to select for traits that allow them to survive and continue to grow. The downside of this strategy is that some daughter cells are dealt bad hands and die. As long as the genetic alterations are made on a relatively small scale, Yen says, cells within the tumor will continually evolve so that they can readily adapt to drugs.

"But here is an opportunity to force cancer's hand, as it were, by causing more damaging changes on a much larger scale than cancer cells can handle," Yen says. "Given that BubR1 is responsible for properly dealing from the genetic deck, its inhibition would result in catastrophic genetic changes that are incompatible with cancer-cell life."

The BubR1 enzyme has multiple roles as part of the cellular machinery that physically moves each of the 23 pairs of human chromosome into each new daughter cell. The pro-tein also plays a part in regulating the so-called mitotic checkpoints, which serve as qual-ity control for cell division. If the machinery does not function properly or the check-points are ignored, some daughter cells get more than their accustomed share of DNA, which can offer them a competitive advantage, Yen says.

Yen and Haomin Huang, Ph.D., a postdoctoral fellow in Yen's laboratory and lead author of the paper, determined that the structure of the BubR1 protein undergoes four chemical modifications that may be important for turning the activity of this enzyme off or on. By mutating BubR1 at positions within the protein that become chemically modified, the re-searchers were able to determine some of the protein's roles in the process of chromosome segregation during mitosis.

One position in particular, labeled S670, was found to be essential in preventing division errors. It serves as a means of connecting chromosomes to the microtubule proteins that pull them into the daughter cells. When the researchers prevented S670 from being properly modified, cell-culture studies showed that the chromosomes failed to be distributed equally between the daughter cells during division.

"Our studies show that of all the proteins and protein complexes associated with cell division, the phosphorylation status of BubR1 is a determining factor in cell-cycle control," Yen says. "Exploiting BubR1's crucial functions may help to increase the efficiency of cancer drugs that disrupt DNA replication, like gemcitabine, or drugs that prevent cell division, like paclitaxel."

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Breaking BubR1 Chromosome DNA Genetic Improper Researchers S670 cancer cells chromosomes daughter mutations protein enzyme shuffle

More articles from Life Sciences:

nachricht Princeton researchers explore how a carbon-fixing organelle forms via phase separation
13.09.2019 | Princeton University

nachricht The working of a molecular string phone
13.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>