Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cells capable of 'early-career' switch

12.05.2015

Salk scientists find a single molecule that controls the fate of mature sensory neurons

Scientists at the Salk Institute have discovered that the role of neurons -- which are responsible for specific tasks in the brain -- is much more flexible than previously believed.


Neighboring neurons in the area of the brain known as the thalamus are shown making connections to the visual cortex (red) and the somatosensory cortex. Visible are the cell bodies (star-like cells in the lower right) and axons (arm-like extensions moving downward).

Courtesy of Andreas Zembrzycki/Salk Institute

By studying sensory neurons in mice, the Salk team found that the malfunction of a single molecule can prompt the neuron to make an "early-career" switch, changing a neuron originally destined to process sound or touch, for example, to instead process vision.

The finding, reported May 11, 2015 in PNAS, will help neuroscientists better understand how brain architecture is molecularly encoded and how it can become miswired. It may also point to ways to prevent or treat human disorders (such as autism) that feature substantial brain structure abnormalities.

"We found an unexpected mechanism that provides surprising brain plasticity in maturing sensory neurons," says the study's first author, Andreas Zembrzycki, a senior research associate at the Salk Institute.

The mechanism, a transcription factor called Lhx2 that was inactivated in neurons, can be used to switch genes on or off to change the function of a sensory neuron in mice. It has been known that Lhx2 is present in many cell types other than in the brain and is needed by a developing fetus to build body parts. Without Lhx2, animals typically die in utero. However, it was not well known that Lhx2 also affects cells after birth.

"This process happens while the neuron matures and no longer divides. We did not understand before this study that relatively mature neurons could be reprogrammed in this way," says senior author Dennis O'Leary, Salk professor and holder of the Vincent J. Coates Chair in Molecular Neurobiology. "This finding opens up a new understanding about how brain architecture is established and a potential therapeutic approach to altering that blueprint."

Scientists had believed that programming neurons was a one-step process. They thought that the stem cells that generate the neurons also programmed their functions once they matured. While this is true, the Salk team found that another step is needed: the Lhx2 transcription factor in mature neurons then ultimately controls the fate of the neuron.

In the mouse study, the scientists manipulated Lhx2 to make the switch in neuronal fate shortly after birth (when the mouse neurons are fully formed and considered mature). The team observed that controlling Lhx2 let them instruct neurons situated in one sensory area to process a different sense, thus enlarging one region at the expense of the other. The scientists don't know yet if targeting Lhx2 would allow neurons to change their function throughout an organism's life.

"This study provides proof that the brain is very plastic and that it responds to both genetic and epigenetic influences well after birth," says O'Leary. "Clinical applications for brain disorders are a long way away, but we now have a new way to think about them."

"Since this study was conducted in mice, we don't know the time frame in which Lhx2 would be operating in humans, but we know that post-birth, neurons in a baby's brain still have not settled into their final position -- they are still being wired up. That could take years," Zembrzycki says.

However, the findings may be an ingredient that contributes to the success of early intervention in some very young children diagnosed with autism, adds Zembrzycki. "The brain's wiring is determined genetically as well as influenced epigenetically by environmental influences and early intervention preventing brain miswiring may be an example of converging genetic and epigenetic mechanisms that are controlled by Lhx2."

###

Authors of the work are Andreas Zembrzycki, Carlos G. Perez-Garcia, and Dennis D. M. O'Leary, all of the Salk Institute for Biological Studies; and Chia-Fang Wang and Shen-Ju Chou, of the Institute of Cellular and Organismic Biology, Academia Sinica, in Taiwan.

The work was funded by the National Institutes of Health and a grant from the National Science Council, Taiwan.

About the Salk Institute for Biological Studies:

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.

Media Contact

Salk Communications
press@salk.edu

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>