Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boroles get a stability boost

06.08.2015

Boroles could be a highly interesting class of materials for practical use in photovoltaic or LED applications – if it weren't for the molecules' extreme instability. Chemists from Würzburg have now discovered a powerful stabiliser.

Boroles are boron containing molecules that have great electron-accepting ability. This makes them excellently suited for materials that could bring further improvements to photovoltaics or OLEDs. But so far, boroles have had one major drawback: They are highly unstable and decay virtually immediately when in contact with water or oxygen.


Fluoromesityl groups boost the stability of boroles. F stands for fluorine, B for boron and C for carbon.

(Picture: Todd Marder)

Chemists at the University of Würzburg have now made an important step forward: Todd Marder and fellow chemists at the Institute of Inorganic Chemistry have significantly stabilised borole molecules by adding a so-called fluoromesityl group, which makes the highly sensitive boroles about 600 times more resistant to water. As a result, the molecules are stable for ten to twelve hours compared to just one minute without the stabilising group. Their electron-accepting ability is fully preserved.

Now the new molecules' robustness will be verified in further tests. The fluoromesityl boroles have proved to be heat resistant and easily vapourable. Therefore, the Würzburg chemists are now eager to investigate whether the novel boroles can be vapour deposited on substrates in wafer-thin films. This would be a major prerequisite for technological applications. Moreover, the scientists are looking for other molecule groups that might stabilise boroles even more efficiently.

“Taming the beast: fluoromesityl groups induce a dramatic stability enhancement in boroles”, Zuolun Zhang, Robert M. Edkins, Martin Haehnel, Marius Wehner, Antonius Eichhorn, Lisa Mailänder, Michael Meier, Johannes Brand, Franziska Brede, Klaus Müller-Buschbaum, Holger Braunschweig, and Todd B. Marder. Chemical Science, published online 13 July 2015, DOI: 10.1039/C5SC02205C

Great collaborative spirit

Todd Marder's team with the work groups of Holger Braunschweig and Klaus Müller-Buschbaum has published the results in the magazine "Chemical Science". Marder emphasises that the joint research of boroles is characterised by a great collaborative spirit which is generally true for the atmosphere at the Würzburg department. The US chemist has researched and taught in Würzburg since 2012. In the 15 years before, he had been head of department at Durham University in England.

An excellent global network

He also points out that the Würzburg Department of Chemistry has an excellent global network: "Everyone here is committed to getting top-class international scientists to work in Würzburg." The Humboldt Foundation supports this goal by awarding generous grants to postdocs. The two initial authors of the publication in "Chemical Science", Zuolun Zhang from China and Robert M. Edkins from the UK, also arrived in Würzburg with a Humboldt scholarship in their pockets.

Comment for "Science" magazine

Shubhankar Kumar Bose from India joined the University of Würzburg as a Humboldt scholar and stayed there as a postdoc. Only recently did he and Todd Marder author a comment for "Science" magazine: As experts in boron chemistry and boron catalysis, the two scientists had been invited by the leading magazine to assess the work of a Canadian chemist ("A leap ahead for activating C-H bonds", 31 July 2015, Science Vol. 349 Issue 6247, p 473-474). This is another example of the international renown of the Würzburg Department of Chemistry

Top result in Shanghai Ranking

Accordingly, the Department of Chemistry has achieved good ranking results in the renowned Shanghai Ranking ("Academic Ranking of Universities Worldwide") of Jiao-Tong University for many years. In 2014, they ranked 30th among the more than 1,200 universities that were assessed which corresponds to rank two in the Germany-wide comparison. The Shanghai Ranking evaluates the research performance of universities according to various parameters.

Contact

Prof. Dr. Todd Marder, Institute of Inorganic Chemistry, University of Würzburg, Phone +49 931 31-85514, todd.marder@uni-wuerzburg.de

Robert Emmerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>