Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow holds secrets for treating colitis and Crohn’s

25.09.2012
Michigan State University researchers have unlocked secrets in bone marrow that could lead to improved treatments for colitis and Crohn’s disease.
The results, featured in the current issue of Proceedings of the National Academy of the Sciences, show that the havoc inflammatory bowel diseases wreaks on the digestive tract is mirrored in bone marrow. Early indications also show that the disorders of the gut could potentially be treated through the bone marrow, said Pam Fraker, MSU University Distinguished Professor of biochemistry and molecular biology.

“It’s possible that if we could reduce bone marrow’s ability to produce inflammatory cells that we could reduce the severity of colitis and Crohn’s disease,” said Fraker, who co-authored the study with MSU colleagues Laura McCabe, professor of physiology and radiology, and Mark Trottier, research specialist. “This could limit the damage that the disease causes and reduce the number of patients needing surgery.”

Colitis and Crohn’s affect more than a million people in the United States, including a growing number of children. There are no preventive treatments; however, steroids are often prescribed to reduce the diseases’ pain and inflammation. The side effect of this course is tissue damage, which could lead to surgery and additional complications.

Watching a young patient suffer through the pain of severe colitis bolstered Fraker’s need to research this devastating disease.

“She was very frail, sick, addicted to narcotics to numb her pain and had several intestinal surgeries to no avail,” Fraker said. “This became a huge motivator for me as it drove home how little real help is available to these patients.”

Fraker focused on bone marrow, which is a large, highly active and responsive tissue. When colitis was induced in mice, she was surprised by the significant and swift changes that occurred in their bone marrow. The symptoms of colitis, such as swelling, anemia and unhealthy increases in monocytes and neutrophils, (cells that fight infection but exacerbate the excessive swelling in intestines) were reflected in the bone marrow.

The bone marrow’s reactions actually fan the flames of the inflammatory bowel diseases rather than help cure it. When bone marrow amps up production of monocytes and neutrophils, it does it at the expense of making lymphocytes and red blood cells, keys to immune defense.

The research was funded in part by the Crohn’s and Colitis Foundation.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world’s most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>