Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blowing in the wind: A polygynous shorebird decides where to breed based on the prevailing wind conditions

12.02.2020

Male pectoral sandpipers typically visit several potential breeding sites during the short arctic summer. The decision about where to go next seems to be made opportunistically: they often leave in the direction the wind takes them. Researchers of the Max Planck Institute for Ornithology in Seewiesen tracked the flight path of 80 males with the help of small satellite transmitters and found that breeding areas in the Russian Arctic are more likely to be visited under tailwind conditions. In an environment where the summer is short and mating opportunities are unpredictable, individuals may save time and energy by using wind support.

Pectoral sandpipers (Calidris melanotos) migrate long distances, also during the breeding season. After a journey from the wintering grounds in the Southern Hemisphere, their breeding area extents over thousands of kilometers along the arctic shores.


Video: Electronic supplementary material: Krietsch J, Valcu M, Kempenaers B. 2020 Wind conditions influence breeding season movements in a nomadic polygynous shorebird. Proc. R. Soc. B XXX: 20192789. http://dx.doi.org/10.1098/rspb.2019.2789

Pectoral sandpipers are polygynous and males intensively compete for fertile females. However, even after successful reproduction males do not stay with the females and their offspring. Most males visit multiple sites across a considerable part of their entire breeding range in search of mating opportunities.

A former study by Bart Kempenaers and Mihai Valcu of the Max Planck Institute for Ornithology in Seewiesen showed that males visited up to 24 potential breeding sites during the four to six weeks breeding season, covering distances of up to 13000 kilometers.

Now the researchers wanted to find out whether the direction of the initial movement away from the study site, which ultimately decides whether males breed in the Russian or North American Arctic, could be based on the prevailing wind conditions.

Utqiaġvik (formerly Barrow, Alaska), the northernmost city in the United States, is a breeding site right in the centre of the pectoral sandpipers’ summer range. Based there, the researchers tracked the flights of a total of 80 males over two years with the help of small (5 g) satellite transmitters and calculated the wind support with data from a global re-analysis model.

Males flew either west into the Russian Arctic, or east into the North American Arctic, but the proportion going west differed substantially between the years.

Males visited Russian breeding sites mainly under supportive wind conditions

Males that went west benefited from strong tailwinds, whereas males that went east more often faced headwinds. “Males that decided to fly west into the Russian Arctic will later need more resources to cover a much longer migration distance”, explains Johannes Krietsch, first author of the study.

“Males flying east into the Canadian Arctic were already moving closer to the Hudson Bay, a common stop-over area also used by males that bred in the Russian Arctic, on the way to their wintering grounds”.

Some of the males did not take the shortest route to their destination but made loop-like flights over the arctic ocean and thus took large detours of thousands of kilometers. The data show that these loop flights could be explained by – possibly naïve – birds initially flying north with strong tailwinds and later changing direction to reach land.

Males fly in groups and an intriguing alternative hypothesis for these flights is related to group dynamics. If some males want to go east, while others are “pulling” the group to go west, they may initially fly north, until the group splits and they turn to their favourite direction.

In contrast to the migration routes to and from the wintering grounds, the nomadic movements within the breeding area depend on the actual environmental conditions and are therefore unpredictable regarding time and destination. “The breeding opportunities are indeed unpredictable for male pectoral sandpipers“, says Bart Kempenaers, who was leading the study.

“It is energetically costly to fight for a territory and for access to fertile females, with the additional challenges of little sleep under continuous daylight and time pressure given the short arctic breeding season”. In fact, the data show that males did not wait for optimal wind conditions for their departure. Instead, the wind influenced both the direction in which the males left and how far they flew and therefore ultimately, in which region they potentially reproduce.

Wissenschaftliche Ansprechpartner:

Johannes Krietsch
Doctoral Student Department of Behavioural Ecology and Evolutionary Genetics
Max Planck Institute for Ornithology, Seewiesen
Phone: ++49 (0)8157 932-412
E-mail: jkrietsch@orn.mpg.de

Prof. Dr. Bart Kempenaers
Director Department of Behavioural Ecology and Evolutionary Genetics
Max Planck Institute for Ornithology, Seewiesen
Email: b.kempenaers@orn.mpg.de

Originalpublikation:

Krietsch J, Valcu M, Kempenaers B. 2020 Wind conditions influence breeding season movements in a nomadic polygynous shorebird. Proc. R. Soc. B 20192789.
http://dx.doi.org/10.1098/rspb.2019.2789

Weitere Informationen:

https://www.youtube.com/watch?v=A-Q5J1wRBUA (Flight tracks of male pectoral sandpipers with wind support indicated)
https://static-content.springer.com/esm/art%3A10.1038%2Fnature20813/MediaObjects... (Flight tracks of male pectoral sandpipers over the entire breeding season)

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie

More articles from Life Sciences:

nachricht The Cerebellum Stores Data Like an MP3 Music File
12.02.2020 | Universität Leipzig

nachricht How roots find their way to water
12.02.2020 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

Im Focus: New insights could lead to superconductivity in ambient conditions

A team of researchers from Switzerland, the US and Poland have found evidence of a uniquely high density of hydrogen atoms in a metal hydride. The smaller spacings between the atoms might enable packing significantly more hydrogen into the material to a point where it could begin to superconduct at room temperature and ambient pressure.

The scientists conducted neutron scattering experiments at the Oak Ridge National Laboratory (ORNL) in the US on samples of zirconium vanadium hydride at...

Im Focus: Viscosity measurements offer new insights into the earth's mantle

An international research group with Dr. Longjian Xie from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) of the University of Bayreuth has succeeded for the first time in measuring the viscosity that molten solids exhibit under the pressure and temperature conditions found in the lower earth mantle. The data obtained support the assumption that a bridgmanite-enriched rock layer was formed during the early history of the earth at a depth of around 1,000 kilometres – at the border to the upper mantle.

In addition, the data also provides indications that the lower mantle contains larger reservoirs of materials that originated in an early magma ocean and have...

Im Focus: Fast rotating white dwarf drags its space-time in a cosmic dance

According to Einstein's general relativity, the rotation of a massive object produces a dragging of space-time in its vicinity. This effect has been measured, in the case of the Earth’s rotation, with satellite experiments. With the help of a radio pulsar, an international team of scientists (with important contributions from scientists at the Max Planck Institute for Radio Astronomy in Bonn, Germany) were able to detect the swirling of the space-time around its fast-rotating white dwarf-companion star, and thus confirm the theory behind the formation of this unique binary star system.

In 1999, a unique binary system was discovered with the Australian Parkes Radio Telescope in the constellation Musca (the Fly), close to the famous Southern...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

The Cerebellum Stores Data Like an MP3 Music File

12.02.2020 | Life Sciences

Blowing in the wind: A polygynous shorebird decides where to breed based on the prevailing wind conditions

12.02.2020 | Life Sciences

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>