Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black raspberries slow cancer by altering hundreds of genes

01.09.2008
New research strongly suggests that a mix of preventative agents, such as those found in concentrated black raspberries, may more effectively inhibit cancer development than single agents aimed at shutting down a particular gene.

Researchers at the Ohio State University Comprehensive Cancer Center examined the effect of freeze-dried black raspberries on genes altered by a chemical carcinogen in an animal model of esophageal cancer.

The carcinogen affected the activity of some 2,200 genes in the animals’ esophagus in only one week, but 460 of those genes were restored to normal activity in animals that consumed freeze-dried black raspberry powder as part of their diet during the exposure.

These findings, published in recent issue of the journal Cancer Research, also helped identify 53 genes that may play a fundamental role in early cancer development and may therefore be important targets for chemoprevention agents.

“We have clearly shown that berries, which contain a variety of anticancer compounds, have a genome-wide effect on the expression of genes involved in cancer development,” says principal investigator Gary D. Stoner, a professor of pathology, human nutrition and medicine who studies dietary agents for the prevention of esophageal cancer.

“This suggests to us that a mixture of preventative agents, which berries provide, may more effectively prevent cancer than a single agent that targets only one or a few genes.”

Stoner notes that black raspberries have vitamins, minerals, phenols and phytosterols, many of which individually are known to prevent cancer in animals.

“Freeze drying the berries concentrates these elements about ten times, giving us a power pack of chemoprevention agents that can influence the different signaling pathways that are deregulated in cancer,” he says.

To conduct this study, Stoner and his colleagues fed rats either a normal diet or a diet containing 5 percent black-raspberry powder. During the third week, half the animals in each diet group were injected three times with a chemical carcinogen, N-nitrosomethylbenzylamine. The animals continued consuming the diets during the week of carcinogen treatment.

After the third week, the researchers examined the animals’ esophageal tissue, thereby capturing gene changes that occur early during carcinogen exposure. Their analyses included measuring the activity, or expression levels, of 41,000 genes. In the carcinogen-treated animals, 2,261 of these genes showed changes in activity of 50 percent or higher.

“These changes in gene expression correlated with changes in the tissue that included greater cell proliferation, marked inflammation, and increased apoptosis,” Stoner says.

In the animals fed berry powder, however, a fifth of the carcinogen affected genes – exactly 462 of them – showed near-normal levels of activity, when compared with controls. Most of these genes are associated with cell proliferation and death, cell attachment and movement, the growth of new blood vessels and other processes that contribute to cancer development. The tissue also appeared more normal and healthy.

Lastly, of the 462 genes restored to normal by the berries, 53 of them were also returned to normal by a second chemoprevention agent tested during a companion study.

“Because both berries and the second agent maintain near-normal levels of expression of these 53 genes, we believe their early deregulation may be especially important in the development of esophageal cancer,” Stoner says.

“What’s emerging from studies in cancer chemoprevention is that using single compounds alone is not enough,” Stoner says. “And berries are not enough. We never get 100 percent tumor inhibition with berries. So we need to think about another food that we can add to them that will boost the chemopreventive activities of berries alone.”

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht New tool improves beekeepers' overwintering odds and bottom line
19.09.2019 | US Department of Agriculture - Agricultural Research Service

nachricht Elusive compounds of greenhouse gas isolated by Warwick chemists
18.09.2019 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

UMD-led study captures six galaxies undergoing sudden, dramatic transitions

19.09.2019 | Physics and Astronomy

Study points to new drug target in fight against cancer

19.09.2019 | Health and Medicine

New tool improves beekeepers' overwintering odds and bottom line

19.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>