Biomarkers may help predict progression of Barrett's esophagus to esophageal adenocarcinoma

“Once a rare cancer representing only 5 percent of all esophageal cancers in the United States, esophageal adenocarcinoma is the cancer with the fastest-rising incidence — six-fold increase in the past three decades — and currently comprises more than 80 percent of all new esophageal cancer cases in this country,” said Xifeng Wu, M.D., chair of the Department of Epidemiology, Division of Cancer Prevention and Population Sciences at The University of Texas MD Anderson Cancer Center, in Houston.

“To reduce the mortality of esophageal adenocarcinoma, the best hope in the near term is to detect it at its early stage, or even better, to prevent the progression of esophageal adenocarcinoma from its premalignant lesion, which is called Barrett's esophagus.”

Wu and colleagues evaluated microRNAs, which are a class of small ribonucleic acids in cells capable of regulating a large number of genes. Research has shown that aberrant expression of microRNAs is involved in cancer development.

The researchers compared hundreds of microRNAs in normal esophageal epithelia and in Barrett's esophagus and esophageal adenocarcinoma tissues of different histological grades with distinct progression risks. They identified a number of differentially expressed microRNAs at each histological stage.

“The expression of microRNAs in Barrett's esophagus and esophageal adenocarcinoma tissues was remarkably similar, indicating that the microRNA aberrations were very early events in the development of Barrett's esophagus,” Wu said. “These aberrations in microRNA expression may drive other late events that ultimately lead to carcinoma formation.”

The researchers also identified a small number of microRNAs that were significantly different between Barrett's esophagus and esophageal adenocarcinoma. Specifically, downregulation of the microRNA miR-375 and upregulation of five microRNAs of the miR-17-92 and homologue family seemed to differentiate Barrett's esophagus and esophageal adenocarcinoma.

“Therefore, those patients with Barrett's esophagus with low levels of miR-375 and/or high levels of the other five microRNAs we found to be upregulated in esophageal adenocarcinoma are at increased risk for malignant progression and should be under intensive surveillance, screening and treatment of their Barrett's esophagus,” Wu said.

“Defining the protein-coding genes targeted by the differentially expressed microRNAs we identified may provide significant biological insights into the development of esophageal adenocarcinoma,” she added. “Moreover, these genes may themselves become promising biomarkers to predict Barrett's esophagus progression as well as potential preventive and therapeutic targets.”

Follow the AACR on Twitter: @aacr
Follow the AACR on Facebook: http://www.facebook.com/aacr.org
About the American Association for Cancer Research
Founded in 1907, the American Association for Cancer Research (AACR) is the world's first and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 17,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit www.AACR.org.

Media Contact

Jeremy Moore EurekAlert!

More Information:

http://www.aacr.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors