Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarkers in Cerebrospinal Fluid Can Identify Patients with Alzheimer´s disease

22.10.2012
Analysis of specific biomarkers in a cerebrospinal fluid sample can differentiate patients with Alzheimer’s disease from those with other types of dementia.

The method, which is being studied by researchers at Sahlgrenska Academy, may eventually permit earlier detection of Alzheimer’s disease.

Due to the similarity of the symptoms, differentiating patients with Alzheimer’s from those with other types of dementia – or patients with Parkinsondisease from those with other motor disorders – is often difficult.

Making a proper diagnosis is essential if proper treatment and medication are to commence at an early stage. A research team at Sahlgrenska Academy, University of Gothenburg, is developing a new method to differentiate patients with Alzheimer’s disease or Parkinson disease by analyzing a cerebrospinal fluid sample.

The study, led by Professor Kaj Blennow and conducted among 450 patients at Skåne University Hospital and Sahlgrenska University Hospital, involved testing five proteins that serve as biomarkers for the two diseases.

“Previous studies have shown that Alzheimer’s disease is associated with biochemical changes in specific proteins of the brain,” says Annika Öhrfelt, a researcher at Sahlgrenska Academy. “This study has found that the inclusion of a new protein can differentiate patients with Alzheimer’s disease from those with Lewy body dementia, Parkinson disease dementia and other types of dementia.”

Similarly, the biomarkers can differentiate patients with Parkinson disease from those with atypical Parkinsonian disorders.

“Additional studies are needed before the biomarkers can be used in clinical practice during the early stages of disease,” says Öhrfelt, “but these results represent an important step along the way.”

The article, entitled “Accuracy of a Panel of 5 Cerebrospinal Fluid Biomarkers in the Differential Diagnosis of Patients with Dementia and/or Parkinsonian Disorders,” was published by the Journal of the American Medical Association.

Link to paper: http://bit.ly/UH3TVd

Contact:
Annika Öhrfelt, Researcher at Sahlgrenska Academy
Cell: +46 734-25 74 99
Landline: +46 31 343 24 06
FACTS ABOUT THE STUDY
The study analyzed the following proteins: beta-amyloid, tau (P-tau), alpha-synuclein and neurofilaments. Participating researchers from the University of Gothenburg: Annika Öhrfelt, Radu Constantinescu, Ulf Andreasson, Björn Holmberg, Henrik Zetterberg and Kaj Blennow.

Helena Aaberg | idw
Further information:
http://bit.ly/UH3TVd
http://www.gu.se

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>