Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biomarker predicts asthma in children

15.07.2010
Children with elevated levels of exhaled nitric oxide (Fraction of Exhaled Nitric Oxide, FeNO) are at increased risk for developing asthma, particularly among children without a parental history of the disease, researchers at the Keck School of Medicine of the University of Southern California, Los Angeles, USA, report in the European Respiratory Journal.

The findings published ahead of print in the ERJ suggest that FeNO may be a useful biomarker for identifying children at risk for the disease, and in developing strategies for preventing asthma. Researchers found that children with the highest levels of FeNO were more than twice as likely to develop asthma compared to those with the lowest levels. Higher levels of FeNO were linked with development of asthma most often in children whose parents had no history of the disease.

Nitric oxide is a gas that is produced by the cells that line the inner wall of the lungs’ airways, and may be a marker of the inflammatory process that occurs in the lungs prior to asthma onset. Although a number of studies have documented the growing prevalence of asthma during the past several decades, the factors causing the rapid rise of the disease are not fully understood.

“We believe this is the first study to demonstrate the predictive value of FeNO for identifying children who are at risk for developing asthma,” said Tracy Bastain, M.P.H., a doctoral student in the Department of Preventive Medicine at the Keck School of Medicine and the lead author of the study. “Our results were strongest in children whose parents had never had asthma, suggesting that FeNO might help to identify additional susceptible children.”

The USC study drew upon data from the Children’s Health Study (CHS), the longest epidemiologic investigation ever conducted on environmental contribution to children’s respiratory health. In 2004, USC researchers measured the level of FeNO in 2,206 healthy, asthma-free children from 13 communities in Southern California. Between 2004 and 2007, they tracked the respiratory health of the children with annual follow-up questionnaires.

Previous studies have found that FeNO is elevated in children with current asthma or allergies. However, researchers at USC were able to draw upon a large cohort of healthy children to identify FeNO as a potential biomarker for asthma development, Bastain said. Further studies are needed to establish whether FeNO can be used in the clinical setting to assess a child’s individual risk for developing asthma.

“Asthma is a very important clinical and public health problem, and there is still much to be learned about the causes of asthma before the burden of asthma can be reduced,” said Frank Gilliland, M.D., Ph.D., professor of preventive medicine at the Keck School of Medicine, director of the Southern California Environmental Health Sciences Center and senior author of the study. “Showing a link between FeNO and later asthma development provides new clues to the development of asthma.”

The study was funded by the National Institute of Environmental Health Sciences, the National Heart, Lung and Blood Institute, the Environmental Protection Agency, and the Hastings Foundation.

Title of the original article: “Exhaled Nitric Oxide, Susceptibility and New-Onset Asthma in the Children`s Health Study.”

Dr. Anka Stegmeier-Petroianu | idw
Further information:
http://www.ersnet.org

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>