Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioluminescent worm found to have iron superpowers

15.12.2017

New Scripps-led study finds common sea worm produces ferritin 8 times more efficient than humans

Researchers at Scripps Institution of Oceanography at the University of California San Diego have made a discovery with potential human health impacts in a parchment tubeworm, the marine invertebrate Chaetopterus sp., that resides in muddy coastal seafloors.


Parchment tubeworm captured in the field.

Credit: Dr. Evelien De Meulenaere, Scripps Institution of Oceanography at UC San Diego.


Image of the bioluminescence of Chaetopterus, the parchment tube worm.

Credit: David Liittschwager, Scripps Institution of Oceanography at UC San Diego

A new study published today in Biochemical Journal finds that the tubeworm, also known for its bioluminescence, is found to have a ferritin with the fastest catalytic performance ever described, nearly eight times faster than that of human capabilities.

Ferritin is an important protein found in nearly all living organisms as it manages iron metabolism in cells by storing and releasing it in a controlled manner. In humans, it is critical to iron storage and iron metabolism, helping balance iron in the blood.

"We were surprised to discover that even though the tubeworm ferritin is very similar to human ferritin, it outperforms the human variant, by a lot," said Scripps research scientist Dimitri Deheyn, the lead investigator on the study. "There are major biotechnological research implications to this finding, in particular for the many labs that develop ferritin applications."

This discovery also has important human health implications for biomedical research, as ferritin is an essential protein for those with iron deficiency and overall iron metabolism issues. This discovery can be a new tool in future research of ferritin to use in patients, thanks to its biocompatibility and ability to carry, protect and deliver small molecules as medication to specific targets.

The parchment tubeworm has long been studied by Deheyn's lab, primarily for its bioluminescent capabilities. The species also has the unique ability to keep its blue light glowing for hours, and sometimes days on end, significantly longer than most bioluminescent organisms that typically illuminate only for milliseconds or seconds. A study published in 2016 in Scientific Reports by former Scripps postdoctoral researcher Renu Rawat suggested that ferritin in the worm's mucus enabled the sustained light production.

Because of the light-stimulating effect, the presence of ferritin in the mucus was considered of interest by the researchers to further understand its role in this unusual light-production pattern in the tubeworm.

"The link to bioluminescence is incredibly important, and we're just beginning to understand how ferritin influences bioluminescence and why ferritin works so much faster in this organism," said Scripps postdoctoral scholar and study co-author Evelien De Meulenaere, who has been studying this tube worm's unique properties for more than three years.

De Meulenaere described ferritin as being shaped like a soccer ball, with openings that take up iron when available, store it and release it when needed. That specific structure allows for a wide range in applications, from medical to environmental. It could help target medication release, function as a safe contrast agent, while also being used for water treatment by selectively taking up and storing contaminants.

In her research, De Meulenaere tested two different approaches to measure enzyme response, covering different time scales. Both approaches compared the reactions of worm ferritin with human ferritin. In the first approach, iron was added to reaction tubes containing the respective ferritins, after which the remaining amount of ferrous iron left in solution was measured over time (1-2 hours). The second analyzed on millisecond scale how much iron oxide was created inside the ferritin, indicated by the generation of "rust" coloration the tube. Both approaches determined the worm ferritin converted iron significantly faster.

The tubeworm is pervasive in nearshore, muddy seafloors. The one used in this study is common throughout San Diego and Southern California, however, different variations of the tubeworm can be found in temperate coastal areas around the world. Considered an invasive species that typically lives in a tube that it builds in the mud, the worm and its tube encasement are also being studied by researchers in Deheyn's Lab to further analyze its resilience to heat.

###

This study was funded by the Air Force Office of Scientific Research (grant no. FA9550-17-0189), which is interested in learning more about the unique bioluminescent properties of the worm, the outstanding performances of the worm ferritin, and the resilient properties of the tube encasement, within a larger framework studying biomimetic systems.

Media Contact

Lauren Fimbres Wood
lmwood@ucsd.edu
858-534-3626

 @UCSanDiego

http://www.ucsd.edu 

Lauren Fimbres Wood | EurekAlert!

More articles from Life Sciences:

nachricht Microbes can grow on nitric oxide (NO)
18.03.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Novel methods for analyzing neural circuits for innate behaviors in insects
15.03.2019 | Kanazawa University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>