Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochemistry of how plants resist insect attack determined

16.11.2010
Many plants, including crops, release volatiles in response to insect attack.

The chemical compounds can be a defense or can be an aromatic call for help to attract enemies of the attacking insect. Researchers from Virginia Tech, Michigan State University, and Georg-August-University Göttingen have discovered how plants produce the defensive compounds.

The research is reported this week in the online early edition of the Proceedings of the National Academy of Sciences. The article, "Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis," is by Sungbeom Lee, postdoctoral associate in biological sciences; Somayesadat Badieyan, Ph.D. student in biological systems engineering; and David R. Bevan, associate professor of biochemistry, all at Virginia Tech; Marco Herde, postdoctoral associate with the Michigan State University, Department of Biochemistry and Molecular Biology; Christiane Gatz, professor and head of the Albrecht-von-Haller-Institute for Plant Sciences at Georg-August-University Göttingen, Germany, and Dorothea Tholl, assistant professor of biological sciences at Virginia Tech.

To gain detailed insight into volatile defense metabolism and its regulation in plant tissues, the researchers focused on the formation of two common volatile compounds, or homoterpenes -- DMNT (4,8-dimethylnona-1,3,7-triene) and TMTT (4,8,12-trimethyltrideca-1,3,7,11-tetraene). They discovered that formation of both compounds is initiated by the same P450 enzyme – belonging to a family of enzymes that initiates oxidation of organic compounds in most plants, animals, and bacteria. In plants, the enzyme is specifically activated by insect attack.

" We are excited to finally have elucidated the biosynthesis of these common plant volatiles. The discovered P450 protein was a long-missing enzymatic link in the formation of homoterpenes," said Tholl.

Lee and colleagues created a model using mammalian forms of P450 to study the catalytic specificity of the plant enzyme in greater detail. "The approach supports future efforts to fully understand and optimize the enzymatic reaction," said Tholl. "A primary aim of the study is to engineer the discovered enzymatic pathway in important crop plants to improve their natural pest controls."

"This work illustrates the power of combining computational model-building with experimental methods in elucidating important biochemical activities," said Bevan. "Our detailed understanding of the biology underlying the production of these plant volatiles will now enable us to apply our new knowledge in agriculture in novel ways."

"We now are in the position to use this and previously identified genes of the biosynthetic pathway as tools to change volatile profiles in plants," said Tholl. "This approach can help us to design insect-induced volatile mixtures that are especially attractive to natural enemies used in biological pest control."

Another intriguing aspect of homoterpene volatiles is that they can elicit defensive responses in unattacked neighboring plants. "It may therefore be possible to exploit these signaling activities by priming defenses in crop fields prior to insect attack via specific transgenic 'emitter' plants," Tholl said.

The research was supported by a U.S. Department of Agriculture Cooperative State Research, Education, and Extension Service National Research Initiative Grant.

The article will be posted at http://www.pnas.org/content/early/recent sometime the week of November 15, 2010.

Learn more about research in the Tholl Lab at http://www.biology.vt.edu/faculty/tholl/

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>