Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond killing tuberculosis

14.05.2018

How can we tolerate an infection without eliminating a pathogen?

Historically, our view of host defense against infection was that we must eliminate pathogens to eradicate disease. However, this perspective has recently been challenged as scientists have taken a lesson from plant biologists about an ancient strategy involving the ability to "tolerate" rather than "resist" infection to maintain health. This concept, referred to as "disease toler-ance", provides an opportunity to develop new strategies that mitigate the consequences of infection.


This is a colored X-ray of a patient's chest showing disseminated, or miliary, tuberculosis (TB) in the lungs and if left untreated, it has almost 100 percent mortality rate. The lungs contain lesions (tubercles, pink) consisting of infected dead tissue. Using mouse models of TB, Tzelepis et al, have identified the critical role of mitochondrial Cyclophilin D for regulating T cell mediated immunity in disease tolerance independent of host resistance to Mycobacterium tuberculosis.

Credit: DU CANE MEDICAL IMAGING LTD/SCIENCE PHOTO LIBRARY

Since the discovery of Mycobacterium tuberculosis, or Mtb, (the bacteria causing TB) over a century ago, great progress has been made in defining strategies that facilitate elimination of the bacteria. For instance, the discovery of antibiotics was a major breakthrough in the treatment of active TB. However, greater than 90 per cent of TB-infected individuals tolerate the bacteria without any treatment.

Dr. Maziar Divangahi, a pulmonary immunologist at the Research Institute of the McGill University Health Centre (RI-MUHC) and a professor of Medicine at McGill University in Montreal, has been try-ing to explain why the vast majority of people infected with Mtb can tolerate the infection without developing disease. Clinicians refer to this condition as "latent tuberculosis", and it affects a quarter of the global population.

"TB is a perfect example of disease tolerance," says Dr. Divangahi who is also the associate director of the Translational Research in Respiratory Diseases Program at the RI-MUHC and a member of the McGill International TB Centre.

Dr. Divangahi's team found that rather than fighting to resist the pathogen, the body's tolerance to Mtb is the key mechanism for preventing the spread of the infection. More surprisingly, they found that having excessive levels of T cells, which are known as soldiers of our immune system, could cause more harm than good.

"We always thought that having more T cells would provide better protection against TB. Instead, we found that it could imbalance disease tolerance causing extensive tissue damage and ultimately killing the host," says Dr. Divangahi, lead author of the study published today in Science Immunology, who is the also the associate director of the Meakins-Christie Laboratories.

Disease tolerance versus host resistance

Our body's defense system is divided into two arms: one is resistance, which aims to eliminate the pathogen, while the other is tolerance, which is designed to control the tissue damage caused by the infection.

"While disease tolerance is an established field of research in simple organisms such as plants, our un-derstanding of this host defense strategy in humans is very limited," says Dr. Divangahi.

Although, immunologists and vaccinologists have made progress in the study of host resistance to infectious diseases, little is known about the mechanisms of disease tolerance in humans.

A key protein in disease tolerance

Dr. Divangahi's team determined that a protein in the mitochondria called cyclophilin D (CypD) acts as a key checkpoint for T cell activation. Through collaboration with Dr. Russell Jones from McGill University, who is an international expert in T cell biology, they identified that CypD is required for controlling T cell metabolism. "T cells are traditionally considered to be important in eliminating Mtb," says Dr. Divangahi. "However, we found that increasing T cell activation in mice by eliminating a metabolic checkpoint unexpectedly compromised host survival without any impact on the growth of Mtb."

"In contrast to conventional thinking, we show that T cells are essential for regulating the body's toler-ance to Mtb infection," explains one of the study's first authors, Dr. Nargis Khan, who is currently a postdoctoral fellow in Dr. Divangahi's lab at the RI-MUHC.

Giving the widespread drug resistance to various Mtb strains the limited pipeline of effective antibiotics and the lack of an efficient vaccine, alternative approaches to treat TB are urgent. "If we could understand the mechanisms of 'natural immunity' that controls TB in 90-95 per cent of infected individuals," says Dr. Divangahi,"we will able to design a novel therapy or vaccine to substantially reduce the world wide burden of this ancient disease."

###

About the study

The study Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tu-berculosis was co-authored by Fanny Tzelepis,* Julianna Blagih,* Nargis Khan,* Joshua Gillard, Laura Mendonca, Dominic G. Roy, Eric H. Ma, Philippe Joubert, Russell G. Jones, Maziar Divangahi†. DOI: 10.1126/sciimmunol.aar4135

This work was supported by grants from the Canadian Institutes of Health Research (CIHR). Dr. Divan-gahi holds a Fonds de recherche du Québec-Santé (FRQS) Award and the Strauss Chair in Respiratory Diseases.

About the Research Institute of the MUHC

The Research Institute of the McGill University Health Centre (RI-MUHC) is a world-renowned biomedical and healthcare research centre. The Institute, which is affiliated with the Faculty of Medicine of McGill University, is the research arm of the McGill University Health Centre (MUHC) - an academic health centre located in Montreal, Canada, that has a mandate to focus on complex care within its community. The RI-MUHC supports over 420 researchers and close to 1,200 research trainees devoted to a broad spectrum of fundamental, clinical and health outcomes research at the Glen and the Montreal General Hospital sites of the MUHC. Its research facilities offer a dynamic multidisciplinary environment that fosters collaboration and leverages discovery aimed at improving the health of individual patients across their lifespan. The RI-MUHC is supported in part by the Fonds de recherche du Québec - Santé (FRQS). http://www.rimuhc.ca

Media contact:

Julie Robert
Communications Coordinator - Research
McGill University Health Centre
514-971-4747 (cell)
514-843-1560
julie.robert@muhc.mcgill.ca

http://www.muhc.ca/ 

Julie Robert | EurekAlert!
Further information:
http://dx.doi.org/10.1126/sciimmunol.aar4135

Further reports about: MUHC T cell activation T cells TB activation cell activation tissue damage

More articles from Life Sciences:

nachricht Machine learning microscope adapts lighting to improve diagnosis
20.11.2019 | Duke University

nachricht The neocortex is critical for learning and memory
20.11.2019 | Max-Planck-Institut für Hirnforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>