Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berlin’s neuroscientists decode important mechanism of nerve cell communication

21.12.2011
By researching fruit flies, neuroscientists of the NeuroCure Cluster of Excellence in Berlin were able to gain a better understanding of a meaningful mechanism of neuronal communication.

They demonstrated the importance of a specific protein for signal transmission between nerve cells. This is of high significance as certain people with autism – a functional development disturbances of the brain – suffer from genetic defects in this protein. Therefore the findings could improve the possibility of treating this disease more effectively. The results are presented in the latest issue of the professional journal Science.

When our brain is at work, for example when we are looking at a picture or planning a movement, its nerve cells communicate with each other. For this purpose they are equipped with specific points of contact, so called synapses. Both sides of a synapse are specialised and have a complex setup which makes sure that the transmission of information from an individual synapse is only ever possible in one direction. The sender – the presynaptic side – is filled with a neurotransmitter that is released in the direction of the recipient – the postsynaptic side – upon an electric command.

Although this may sound simple, it is a highly complicated biochemical process that takes place in less than a millisecond and is strictly controlled in terms of space and time. A great number of specialised proteins are required to cooperate and enable an optimal release of the neurotransmitter. The “RIM binding protein” (RBP) plays an important part in this respect. As demonstrated by the scientists of the NeuroCure Cluster of Excellence surrounding Stephan Sigrist (Freie Universität Berlin) and Dietmar Schmitz (Charité – Universitätsmedizin Berlin and Deutsches Zentrum für Neurodegenerative Erkrankungen), the RBP-protein is of great significance for releasing the neurotransmitter.

The neuroscientists used the fruit fly as a model organism. Thanks to the simple setup of its brain and synapses it is ideal for experimental examinations. At the same time, the fly’s synaptic proteins are very similar to those of humans due to common descent dating back hundreds of million years ago. Through functional experiments and a new method of high-resolution microscopy, the scientists gained insights into previously unknown areas where the transmission takes place. The neuroscientists found out that the RBP-protein holds a key position in the fruit fly’s presynapsis. It is necessary for effectively connecting the release of the neurotransmitter to the electric command, which enables the sensible communication between nerve cells.

There are more and more indications that genetic defects in the RBP-proteins are an important aspect of autism in humans. The initial functional description of the fruit fly’s RBP-protein therefore does not only extend our comprehension of neuronal communication, it also provides a reference point to help understand brain malfunctions that occur with autism. For this reason the neuroscientists are hoping to contribute to the fundamental principles of a more effective treatment.

NeuroCure is a Cluster of Excellence in the framework of the Excellence Initiative funded by the German federal and state governments since 2007. The interdisciplinary research alliance crosslinks fundamental neuroscientific research and clinical application to transfer scientific findings on the functioning of the nervous system and neurological diseases to effective therapies.

Contact:
Stephan Sigrist
Freie Universität Berlin
Takustr. 6
D-14195 Berlin
Tel: +49 (0)30 838-56940
E-mail: stephan.sigrist@fu-berlin.de

Carsten Wette | idw
Further information:
http://www.neurocure.de
http://www.fu-berlin.de

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>