Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees Can Be More Important Than Fertilizer

10.06.2014

Experiment confirms that insects play a key role in the pollination of cultivated plants

A lack of bees and other wild insects to pollinate crop plants can reduce harvest yields more drastically than a lack of fertilizer or a failure to provide the crops with sufficient water.


A bee of the genus Panurginus leaves an almond blossom in Northern California.

Photo: Alexandra-Maria Klein

When crops are adequately pollinated, on the other hand, the plants bear more fruit and their nutrient content changes. These are the findings of an experiment on almond trees conducted in California by the Freiburg ecologist Prof. Dr. Alexandra-Maria Klein and her colleagues from the USA.

The team published articles presenting their findings in the journals Plant Biology and PLoS ONE. Alexandra-Maria Klein will receive the 25,000-euro CULTURA Prize on Tuesday, 17 June 2014, for this and other research projects on the importance of insects for the pollination of crop plants. Conferred by the Alfred Toepfer Foundation, the prize recognizes European scientists for innovative and exemplary research approaches in the areas of nature conservation, agriculture and forestry, and related sciences.

Together with students and colleagues at the University of California, Berkeley, Alexandra Klein manipulated almond trees by preventing bees from pollinating blossoms with the help of cages, allowing the bees to pollinate the blossoms, or pollinating them by hand. In addition, the researchers watered and fertilized trees in accordance with local practices or gave them only little water or no fertilizer.

In the case of several almond trees, they combined the various manipulations in order to study in isolation and in combination the effects on harvest yield and the composition of nutrients in the nuts. The almond trees that were pollinated by hand produced the most nuts, but they were also very small.

By contrast, a tree that was left unpollinated hardly produced any nuts at all – but the few that it did produce were very large. The yield of the trees pollinated by bees was roughly 200 percent higher than that of self-pollinatedtrees.

Fertilization and watering only had an effect on harvest yield in combination with the pollination manipulations. However, the inadequately watered trees lost more leaves, and the leaves of the unfertilized trees increasingly turned yellow.

This led the scientists to the conclusion that an almond tree can compensate for a lack of nutrients and water in the short term by directing stored nutrients and water to the fruits but cannot compensate for insufficient pollination. Furthermore, the scientists demonstrated that the composition of nutrients differs depending on the pollination mode: Nuts from the self-pollinated trees contained a lower proportion of linoleic acid but a higher proportion of vitamin E.

Original publications:

  • Klein, A.M., Hendrix, S.D., Clough, Y., Scofield, A., Kremen, C. 2014. Interacting effects of pollination, water and nutrients on fruit tree performance. Plant Biology, online first, DOI:10.1111/plb.12180
  • Brittain, C., Kremen, C., Garber, A., Klein, A.M. 2014. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9: e90082. DOI:10.1371/journal.pone.0090082

Prof. Dr. Alexandra-Maria Klein | University of Freiburg
Further information:
http://www.pr.uni-freiburg.de/pm/2014/pm.2014-06-10.50-en?set_language=en

Further reports about: Biology Conservation Ecology Foundation Plant agriculture composition crop crops fertilizer

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>